You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2266 lines
64 KiB
C
2266 lines
64 KiB
C
2 years ago
|
/*
|
||
|
------------------------------------------------------------------------------
|
||
|
Licensing information can be found at the end of the file.
|
||
|
------------------------------------------------------------------------------
|
||
|
|
||
|
cute_c2.h - v1.10
|
||
|
|
||
|
To create implementation (the function definitions)
|
||
|
#define CUTE_C2_IMPLEMENTATION
|
||
|
in *one* C/CPP file (translation unit) that includes this file
|
||
|
|
||
|
|
||
|
SUMMARY
|
||
|
|
||
|
cute_c2 is a single-file header that implements 2D collision detection routines
|
||
|
that test for overlap, and optionally can find the collision manifold. The
|
||
|
manifold contains all necessary information to prevent shapes from inter-
|
||
|
penetrating, which is useful for character controllers, general physics
|
||
|
simulation, and user-interface programming.
|
||
|
|
||
|
This header implements a group of "immediate mode" functions that should be
|
||
|
very easily adapted into pre-existing projects.
|
||
|
|
||
|
|
||
|
THE IMPORTANT PARTS
|
||
|
|
||
|
Most of the math types in this header are for internal use. Users care about
|
||
|
the shape types and the collision functions.
|
||
|
|
||
|
SHAPE TYPES:
|
||
|
* c2Circle
|
||
|
* c2Capsule
|
||
|
* c2AABB
|
||
|
* c2Ray
|
||
|
* c2Poly
|
||
|
|
||
|
COLLISION FUNCTIONS (*** is a shape name from the above list):
|
||
|
* c2***to*** - boolean YES/NO hittest
|
||
|
* c2***to***Manifold - construct manifold to describe how shapes hit
|
||
|
* c2GJK - runs GJK algorithm to find closest point pair between two shapes
|
||
|
* c2TOI - computes the time of impact between two shapes, useful for sweeping shapes, or doing shape casts
|
||
|
* c2MakePoly - Runs convex hull algorithm and computes normals on input point-set
|
||
|
* c2Collided - generic version of c2***to*** funcs
|
||
|
* c2Collide - generic version of c2***to***Manifold funcs
|
||
|
* c2CastRay - generic version of c2Rayto*** funcs
|
||
|
|
||
|
The rest of the header is more or less for internal use. Here is an example of
|
||
|
making some shapes and testing for collision:
|
||
|
|
||
|
c2Circle c;
|
||
|
c.p = position;
|
||
|
c.r = radius;
|
||
|
|
||
|
c2Capsule cap;
|
||
|
cap.a = first_endpoint;
|
||
|
cap.b = second_endpoint;
|
||
|
cap.r = radius;
|
||
|
|
||
|
int hit = c2CircletoCapsule(c, cap);
|
||
|
if (hit)
|
||
|
{
|
||
|
handle collision here...
|
||
|
}
|
||
|
|
||
|
For more code examples and tests please see:
|
||
|
https://github.com/RandyGaul/cute_header/tree/master/examples_cute_gl_and_c2
|
||
|
|
||
|
Here is a past discussion thread on this header:
|
||
|
https://www.reddit.com/r/gamedev/comments/5tqyey/tinyc2_2d_collision_detection_library_in_c/
|
||
|
|
||
|
Here is a very nice repo containing various tests and examples using SFML for rendering:
|
||
|
https://github.com/sro5h/tinyc2-tests
|
||
|
|
||
|
|
||
|
FEATURES
|
||
|
|
||
|
* Circles, capsules, AABBs, rays and convex polygons are supported
|
||
|
* Fast boolean only result functions (hit yes/no)
|
||
|
* Slghtly slower manifold generation for collision normals + depths +points
|
||
|
* GJK implementation (finds closest points for disjoint pairs of shapes)
|
||
|
* Shape casts/sweeps with c2TOI function (time of impact)
|
||
|
* Robust 2D convex hull generator
|
||
|
* Lots of correctly implemented and tested 2D math routines
|
||
|
* Implemented in portable C, and is readily portable to other languages
|
||
|
* Generic c2Collide, c2Collided and c2CastRay function (can pass in any shape type)
|
||
|
* Extensive examples at: https://github.com/RandyGaul/cute_headers/tree/master/examples_cute_gl_and_c2
|
||
|
|
||
|
|
||
|
Revision History
|
||
|
|
||
|
1.0 (02/13/2017) initial release
|
||
|
1.01 (02/13/2017) const crusade, minor optimizations, capsule degen
|
||
|
1.02 (03/21/2017) compile fixes for c on more compilers
|
||
|
1.03 (09/15/2017) various bugfixes and quality of life changes to manifolds
|
||
|
1.04 (03/25/2018) fixed manifold bug in c2CircletoAABBManifold
|
||
|
1.05 (11/01/2018) added c2TOI (time of impact) for shape cast/sweep test
|
||
|
1.06 (08/23/2019) C2_*** types to C2_TYPE_***, and CUTE_C2_API
|
||
|
1.07 (10/19/2019) Optimizations to c2TOI - breaking change to c2GJK API
|
||
|
1.08 (12/22/2019) Remove contact point + normal from c2TOI, removed feather
|
||
|
radius from c2GJK, fixed various bugs in capsule to poly
|
||
|
manifold, did a pass on all docs
|
||
|
1.09 (07/27/2019) Added c2Inflate - to inflate/deflate shapes for c2TOI
|
||
|
1.10 (02/05/2022) Implemented GJK-Raycast for c2TOI (from E. Catto's Box2D)
|
||
|
|
||
|
|
||
|
Contributors
|
||
|
|
||
|
Plastburk 1.01 - const pointers pull request
|
||
|
mmozeiko 1.02 - 3 compile bugfixes
|
||
|
felipefs 1.02 - 3 compile bugfixes
|
||
|
seemk 1.02 - fix branching bug in c2Collide
|
||
|
sro5h 1.02 - bug reports for multiple manifold funcs
|
||
|
sro5h 1.03 - work involving quality of life fixes for manifolds
|
||
|
Wizzard033 1.06 - C2_*** types to C2_TYPE_***, and CUTE_C2_API
|
||
|
Tyler Glaeil 1.08 - Lots of bug reports and disussion on capsules + TOIs
|
||
|
|
||
|
|
||
|
DETAILS/ADVICE
|
||
|
|
||
|
BROAD PHASE
|
||
|
|
||
|
This header does not implement a broad-phase, and instead concerns itself with
|
||
|
the narrow-phase. This means this header just checks to see if two individual
|
||
|
shapes are touching, and can give information about how they are touching.
|
||
|
|
||
|
Very common 2D broad-phases are tree and grid approaches. Quad trees are good
|
||
|
for static geometry that does not move much if at all. Dynamic AABB trees are
|
||
|
good for general purpose use, and can handle moving objects very well. Grids
|
||
|
are great and are similar to quad trees.
|
||
|
|
||
|
If implementing a grid it can be wise to have each collideable grid cell hold
|
||
|
an integer. This integer refers to a 2D shape that can be passed into the
|
||
|
various functions in this header. The shape can be transformed from "model"
|
||
|
space to "world" space using c2x -- a transform struct. In this way a grid
|
||
|
can be implemented that holds any kind of convex shape (that this header
|
||
|
supports) while conserving memory with shape instancing.
|
||
|
|
||
|
NUMERIC ROBUSTNESS
|
||
|
|
||
|
Many of the functions in cute c2 use `c2GJK`, an implementation of the GJK
|
||
|
algorithm. Internally GJK computes signed area values, and these values are
|
||
|
very numerically sensitive to large shapes. This means the GJK function will
|
||
|
break down if input shapes are too large or too far away from the origin.
|
||
|
|
||
|
In general it is best to compute collision detection on small shapes very
|
||
|
close to the origin. One trick is to keep your collision information numerically
|
||
|
very tiny, and simply scale it up when rendering to the appropriate size.
|
||
|
|
||
|
For reference, if your shapes are all AABBs and contain a width and height
|
||
|
of somewhere between 1.0f and 10.0f, everything will be fine. However, once
|
||
|
your shapes start approaching a width/height of 100.0f to 1000.0f GJK can
|
||
|
start breaking down.
|
||
|
|
||
|
This is a complicated topic, so feel free to ask the author for advice here.
|
||
|
|
||
|
Here is an example demonstrating this problem with two large AABBs:
|
||
|
https://github.com/RandyGaul/cute_headers/issues/160
|
||
|
|
||
|
Please email at my address with any questions or comments at:
|
||
|
author's last name followed by 1748 at gmail
|
||
|
*/
|
||
|
|
||
|
#if !defined(CUTE_C2_H)
|
||
|
|
||
|
// this can be adjusted as necessary, but is highly recommended to be kept at 8.
|
||
|
// higher numbers will incur quite a bit of memory overhead, and convex shapes
|
||
|
// over 8 verts start to just look like spheres, which can be implicitly rep-
|
||
|
// resented as a point + radius. usually tools that generate polygons should be
|
||
|
// constructed so they do not output polygons with too many verts.
|
||
|
// Note: polygons in cute_c2 are all *convex*.
|
||
|
#define C2_MAX_POLYGON_VERTS 8
|
||
|
|
||
|
// 2d vector
|
||
|
typedef struct c2v
|
||
|
{
|
||
|
float x;
|
||
|
float y;
|
||
|
} c2v;
|
||
|
|
||
|
// 2d rotation composed of cos/sin pair for a single angle
|
||
|
// We use two floats as a small optimization to avoid computing sin/cos unnecessarily
|
||
|
typedef struct c2r
|
||
|
{
|
||
|
float c;
|
||
|
float s;
|
||
|
} c2r;
|
||
|
|
||
|
// 2d rotation matrix
|
||
|
typedef struct c2m
|
||
|
{
|
||
|
c2v x;
|
||
|
c2v y;
|
||
|
} c2m;
|
||
|
|
||
|
// 2d transformation "x"
|
||
|
// These are used especially for c2Poly when a c2Poly is passed to a function.
|
||
|
// Since polygons are prime for "instancing" a c2x transform can be used to
|
||
|
// transform a polygon from local space to world space. In functions that take
|
||
|
// a c2x pointer (like c2PolytoPoly), these pointers can be NULL, which represents
|
||
|
// an identity transformation and assumes the verts inside of c2Poly are already
|
||
|
// in world space.
|
||
|
typedef struct c2x
|
||
|
{
|
||
|
c2v p;
|
||
|
c2r r;
|
||
|
} c2x;
|
||
|
|
||
|
// 2d halfspace (aka plane, aka line)
|
||
|
typedef struct c2h
|
||
|
{
|
||
|
c2v n; // normal, normalized
|
||
|
float d; // distance to origin from plane, or ax + by = d
|
||
|
} c2h;
|
||
|
|
||
|
typedef struct c2Circle
|
||
|
{
|
||
|
c2v p;
|
||
|
float r;
|
||
|
} c2Circle;
|
||
|
|
||
|
typedef struct c2AABB
|
||
|
{
|
||
|
c2v min;
|
||
|
c2v max;
|
||
|
} c2AABB;
|
||
|
|
||
|
// a capsule is defined as a line segment (from a to b) and radius r
|
||
|
typedef struct c2Capsule
|
||
|
{
|
||
|
c2v a;
|
||
|
c2v b;
|
||
|
float r;
|
||
|
} c2Capsule;
|
||
|
|
||
|
typedef struct c2Poly
|
||
|
{
|
||
|
int count;
|
||
|
c2v verts[C2_MAX_POLYGON_VERTS];
|
||
|
c2v norms[C2_MAX_POLYGON_VERTS];
|
||
|
} c2Poly;
|
||
|
|
||
|
// IMPORTANT:
|
||
|
// Many algorithms in this file are sensitive to the magnitude of the
|
||
|
// ray direction (c2Ray::d). It is highly recommended to normalize the
|
||
|
// ray direction and use t to specify a distance. Please see this link
|
||
|
// for an in-depth explanation: https://github.com/RandyGaul/cute_headers/issues/30
|
||
|
typedef struct c2Ray
|
||
|
{
|
||
|
c2v p; // position
|
||
|
c2v d; // direction (normalized)
|
||
|
float t; // distance along d from position p to find endpoint of ray
|
||
|
} c2Ray;
|
||
|
|
||
|
typedef struct c2Raycast
|
||
|
{
|
||
|
float t; // time of impact
|
||
|
c2v n; // normal of surface at impact (unit length)
|
||
|
} c2Raycast;
|
||
|
|
||
|
// position of impact p = ray.p + ray.d * raycast.t
|
||
|
#define c2Impact(ray, t) c2Add(ray.p, c2Mulvs(ray.d, t))
|
||
|
|
||
|
// contains all information necessary to resolve a collision, or in other words
|
||
|
// this is the information needed to separate shapes that are colliding. Doing
|
||
|
// the resolution step is *not* included in cute_c2.
|
||
|
typedef struct c2Manifold
|
||
|
{
|
||
|
int count;
|
||
|
float depths[2];
|
||
|
c2v contact_points[2];
|
||
|
|
||
|
// always points from shape A to shape B (first and second shapes passed into
|
||
|
// any of the c2***to***Manifold functions)
|
||
|
c2v n;
|
||
|
} c2Manifold;
|
||
|
|
||
|
// This define allows exporting/importing of the header to a dynamic library.
|
||
|
// Here's an example.
|
||
|
// #define CUTE_C2_API extern "C" __declspec(dllexport)
|
||
|
#if !defined(CUTE_C2_API)
|
||
|
# define CUTE_C2_API
|
||
|
#endif
|
||
|
|
||
|
// boolean collision detection
|
||
|
// these versions are faster than the manifold versions, but only give a YES/NO result
|
||
|
CUTE_C2_API int c2CircletoCircle(c2Circle A, c2Circle B);
|
||
|
CUTE_C2_API int c2CircletoAABB(c2Circle A, c2AABB B);
|
||
|
CUTE_C2_API int c2CircletoCapsule(c2Circle A, c2Capsule B);
|
||
|
CUTE_C2_API int c2AABBtoAABB(c2AABB A, c2AABB B);
|
||
|
CUTE_C2_API int c2AABBtoCapsule(c2AABB A, c2Capsule B);
|
||
|
CUTE_C2_API int c2CapsuletoCapsule(c2Capsule A, c2Capsule B);
|
||
|
CUTE_C2_API int c2CircletoPoly(c2Circle A, const c2Poly* B, const c2x* bx);
|
||
|
CUTE_C2_API int c2AABBtoPoly(c2AABB A, const c2Poly* B, const c2x* bx);
|
||
|
CUTE_C2_API int c2CapsuletoPoly(c2Capsule A, const c2Poly* B, const c2x* bx);
|
||
|
CUTE_C2_API int c2PolytoPoly(const c2Poly* A, const c2x* ax, const c2Poly* B, const c2x* bx);
|
||
|
|
||
|
// ray operations
|
||
|
// output is placed into the c2Raycast struct, which represents the hit location
|
||
|
// of the ray. the out param contains no meaningful information if these funcs
|
||
|
// return 0
|
||
|
CUTE_C2_API int c2RaytoCircle(c2Ray A, c2Circle B, c2Raycast* out);
|
||
|
CUTE_C2_API int c2RaytoAABB(c2Ray A, c2AABB B, c2Raycast* out);
|
||
|
CUTE_C2_API int c2RaytoCapsule(c2Ray A, c2Capsule B, c2Raycast* out);
|
||
|
CUTE_C2_API int c2RaytoPoly(c2Ray A, const c2Poly* B, const c2x* bx_ptr, c2Raycast* out);
|
||
|
|
||
|
// manifold generation
|
||
|
// These functions are (generally) slower than the boolean versions, but will compute one
|
||
|
// or two points that represent the plane of contact. This information is usually needed
|
||
|
// to resolve and prevent shapes from colliding. If no collision occured the count member
|
||
|
// of the manifold struct is set to 0.
|
||
|
CUTE_C2_API void c2CircletoCircleManifold(c2Circle A, c2Circle B, c2Manifold* m);
|
||
|
CUTE_C2_API void c2CircletoAABBManifold(c2Circle A, c2AABB B, c2Manifold* m);
|
||
|
CUTE_C2_API void c2CircletoCapsuleManifold(c2Circle A, c2Capsule B, c2Manifold* m);
|
||
|
CUTE_C2_API void c2AABBtoAABBManifold(c2AABB A, c2AABB B, c2Manifold* m);
|
||
|
CUTE_C2_API void c2AABBtoCapsuleManifold(c2AABB A, c2Capsule B, c2Manifold* m);
|
||
|
CUTE_C2_API void c2CapsuletoCapsuleManifold(c2Capsule A, c2Capsule B, c2Manifold* m);
|
||
|
CUTE_C2_API void c2CircletoPolyManifold(c2Circle A, const c2Poly* B, const c2x* bx, c2Manifold* m);
|
||
|
CUTE_C2_API void c2AABBtoPolyManifold(c2AABB A, const c2Poly* B, const c2x* bx, c2Manifold* m);
|
||
|
CUTE_C2_API void c2CapsuletoPolyManifold(c2Capsule A, const c2Poly* B, const c2x* bx, c2Manifold* m);
|
||
|
CUTE_C2_API void c2PolytoPolyManifold(const c2Poly* A, const c2x* ax, const c2Poly* B, const c2x* bx, c2Manifold* m);
|
||
|
|
||
|
typedef enum
|
||
|
{
|
||
|
C2_TYPE_CIRCLE,
|
||
|
C2_TYPE_AABB,
|
||
|
C2_TYPE_CAPSULE,
|
||
|
C2_TYPE_POLY
|
||
|
} C2_TYPE;
|
||
|
|
||
|
// This struct is only for advanced usage of the c2GJK function. See comments inside of the
|
||
|
// c2GJK function for more details.
|
||
|
typedef struct c2GJKCache
|
||
|
{
|
||
|
float metric;
|
||
|
int count;
|
||
|
int iA[3];
|
||
|
int iB[3];
|
||
|
float div;
|
||
|
} c2GJKCache;
|
||
|
|
||
|
// This is an advanced function, intended to be used by people who know what they're doing.
|
||
|
//
|
||
|
// Runs the GJK algorithm to find closest points, returns distance between closest points.
|
||
|
// outA and outB can be NULL, in this case only distance is returned. ax_ptr and bx_ptr
|
||
|
// can be NULL, and represent local to world transformations for shapes A and B respectively.
|
||
|
// use_radius will apply radii for capsules and circles (if set to false, spheres are
|
||
|
// treated as points and capsules are treated as line segments i.e. rays). The cache parameter
|
||
|
// should be NULL, as it is only for advanced usage (unless you know what you're doing, then
|
||
|
// go ahead and use it). iterations is an optional parameter.
|
||
|
//
|
||
|
// IMPORTANT NOTE:
|
||
|
// The GJK function is sensitive to large shapes, since it internally will compute signed area
|
||
|
// values. `c2GJK` is called throughout cute c2 in many ways, so try to make sure all of your
|
||
|
// collision shapes are not gigantic. For example, try to keep the volume of all your shapes
|
||
|
// less than 100.0f. If you need large shapes, you should use tiny collision geometry for all
|
||
|
// cute c2 function, and simply render the geometry larger on-screen by scaling it up.
|
||
|
CUTE_C2_API float c2GJK(const void* A, C2_TYPE typeA, const c2x* ax_ptr, const void* B, C2_TYPE typeB, const c2x* bx_ptr, c2v* outA, c2v* outB, int use_radius, int* iterations, c2GJKCache* cache);
|
||
|
|
||
|
// Stores results of a time of impact calculation done by `c2TOI`.
|
||
|
typedef struct c2TOIResult
|
||
|
{
|
||
|
int hit; // 1 if shapes were touching at the TOI, 0 if they never hit.
|
||
|
float toi; // The time of impact between two shapes.
|
||
|
c2v n; // Surface normal from shape A to B at the time of impact.
|
||
|
c2v p; // Point of contact between shapes A and B at time of impact.
|
||
|
int iterations; // Number of iterations the solver underwent.
|
||
|
} c2TOIResult;
|
||
|
|
||
|
// This is an advanced function, intended to be used by people who know what they're doing.
|
||
|
//
|
||
|
// Computes the time of impact from shape A and shape B. The velocity of each shape is provided
|
||
|
// by vA and vB respectively. The shapes are *not* allowed to rotate over time. The velocity is
|
||
|
// assumed to represent the change in motion from time 0 to time 1, and so the return value will
|
||
|
// be a number from 0 to 1. To move each shape to the colliding configuration, multiply vA and vB
|
||
|
// each by the return value. ax_ptr and bx_ptr are optional parameters to transforms for each shape,
|
||
|
// and are typically used for polygon shapes to transform from model to world space. Set these to
|
||
|
// NULL to represent identity transforms. iterations is an optional parameter. use_radius
|
||
|
// will apply radii for capsules and circles (if set to false, spheres are treated as points and
|
||
|
// capsules are treated as line segments i.e. rays).
|
||
|
//
|
||
|
// IMPORTANT NOTE:
|
||
|
// The c2TOI function can be used to implement a "swept character controller", but it can be
|
||
|
// difficult to do so. Say we compute a time of impact with `c2TOI` and move the shapes to the
|
||
|
// time of impact, and adjust the velocity by zeroing out the velocity along the surface normal.
|
||
|
// If we then call `c2TOI` again, it will fail since the shapes will be considered to start in
|
||
|
// a colliding configuration. There are many styles of tricks to get around this problem, and
|
||
|
// all of them involve giving the next call to `c2TOI` some breathing room. It is recommended
|
||
|
// to use some variation of the following algorithm:
|
||
|
//
|
||
|
// 1. Call c2TOI.
|
||
|
// 2. Move the shapes to the TOI.
|
||
|
// 3. Slightly inflate the size of one, or both, of the shapes so they will be intersecting.
|
||
|
// The purpose is to make the shapes numerically intersecting, but not visually intersecting.
|
||
|
// Another option is to call c2TOI with slightly deflated shapes.
|
||
|
// See the function `c2Inflate` for some more details.
|
||
|
// 4. Compute the collision manifold between the inflated shapes (for example, use c2PolytoPolyManifold).
|
||
|
// 5. Gently push the shapes apart. This will give the next call to c2TOI some breathing room.
|
||
|
CUTE_C2_API c2TOIResult c2TOI(const void* A, C2_TYPE typeA, const c2x* ax_ptr, c2v vA, const void* B, C2_TYPE typeB, const c2x* bx_ptr, c2v vB, int use_radius);
|
||
|
|
||
|
// Inflating a shape.
|
||
|
//
|
||
|
// This is useful to numerically grow or shrink a polytope. For example, when calling
|
||
|
// a time of impact function it can be good to use a slightly smaller shape. Then, once
|
||
|
// both shapes are moved to the time of impact a collision manifold can be made from the
|
||
|
// slightly larger (and now overlapping) shapes.
|
||
|
//
|
||
|
// IMPORTANT NOTE
|
||
|
// Inflating a shape with sharp corners can cause those corners to move dramatically.
|
||
|
// Deflating a shape can avoid this problem, but deflating a very small shape can invert
|
||
|
// the planes and result in something that is no longer convex. Make sure to pick an
|
||
|
// appropriately small skin factor, for example 1.0e-6f.
|
||
|
CUTE_C2_API void c2Inflate(void* shape, C2_TYPE type, float skin_factor);
|
||
|
|
||
|
// Computes 2D convex hull. Will not do anything if less than two verts supplied. If
|
||
|
// more than C2_MAX_POLYGON_VERTS are supplied extras are ignored.
|
||
|
CUTE_C2_API int c2Hull(c2v* verts, int count);
|
||
|
CUTE_C2_API void c2Norms(c2v* verts, c2v* norms, int count);
|
||
|
|
||
|
// runs c2Hull and c2Norms, assumes p->verts and p->count are both set to valid values
|
||
|
CUTE_C2_API void c2MakePoly(c2Poly* p);
|
||
|
|
||
|
// Generic collision detection routines, useful for games that want to use some poly-
|
||
|
// morphism to write more generic-styled code. Internally calls various above functions.
|
||
|
// For AABBs/Circles/Capsules ax and bx are ignored. For polys ax and bx can define
|
||
|
// model to world transformations (for polys only), or be NULL for identity transforms.
|
||
|
CUTE_C2_API int c2Collided(const void* A, const c2x* ax, C2_TYPE typeA, const void* B, const c2x* bx, C2_TYPE typeB);
|
||
|
CUTE_C2_API void c2Collide(const void* A, const c2x* ax, C2_TYPE typeA, const void* B, const c2x* bx, C2_TYPE typeB, c2Manifold* m);
|
||
|
CUTE_C2_API int c2CastRay(c2Ray A, const void* B, const c2x* bx, C2_TYPE typeB, c2Raycast* out);
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
#define C2_INLINE __forceinline
|
||
|
#else
|
||
|
#define C2_INLINE inline __attribute__((always_inline))
|
||
|
#endif
|
||
|
|
||
|
// adjust these primitives as seen fit
|
||
|
#include <string.h> // memcpy
|
||
|
#include <math.h>
|
||
|
#define c2Sin(radians) sinf(radians)
|
||
|
#define c2Cos(radians) cosf(radians)
|
||
|
#define c2Sqrt(a) sqrtf(a)
|
||
|
#define c2Min(a, b) ((a) < (b) ? (a) : (b))
|
||
|
#define c2Max(a, b) ((a) > (b) ? (a) : (b))
|
||
|
#define c2Abs(a) ((a) < 0 ? -(a) : (a))
|
||
|
#define c2Clamp(a, lo, hi) c2Max(lo, c2Min(a, hi))
|
||
|
C2_INLINE void c2SinCos(float radians, float* s, float* c) { *c = c2Cos(radians); *s = c2Sin(radians); }
|
||
|
#define c2Sign(a) (a < 0 ? -1.0f : 1.0f)
|
||
|
|
||
|
// The rest of the functions in the header-only portion are all for internal use
|
||
|
// and use the author's personal naming conventions. It is recommended to use one's
|
||
|
// own math library instead of the one embedded here in cute_c2, but for those
|
||
|
// curious or interested in trying it out here's the details:
|
||
|
|
||
|
// The Mul functions are used to perform multiplication. x stands for transform,
|
||
|
// v stands for vector, s stands for scalar, r stands for rotation, h stands for
|
||
|
// halfspace and T stands for transpose.For example c2MulxvT stands for "multiply
|
||
|
// a transform with a vector, and transpose the transform".
|
||
|
|
||
|
// vector ops
|
||
|
C2_INLINE c2v c2V(float x, float y) { c2v a; a.x = x; a.y = y; return a; }
|
||
|
C2_INLINE c2v c2Add(c2v a, c2v b) { a.x += b.x; a.y += b.y; return a; }
|
||
|
C2_INLINE c2v c2Sub(c2v a, c2v b) { a.x -= b.x; a.y -= b.y; return a; }
|
||
|
C2_INLINE float c2Dot(c2v a, c2v b) { return a.x * b.x + a.y * b.y; }
|
||
|
C2_INLINE c2v c2Mulvs(c2v a, float b) { a.x *= b; a.y *= b; return a; }
|
||
|
C2_INLINE c2v c2Mulvv(c2v a, c2v b) { a.x *= b.x; a.y *= b.y; return a; }
|
||
|
C2_INLINE c2v c2Div(c2v a, float b) { return c2Mulvs(a, 1.0f / b); }
|
||
|
C2_INLINE c2v c2Skew(c2v a) { c2v b; b.x = -a.y; b.y = a.x; return b; }
|
||
|
C2_INLINE c2v c2CCW90(c2v a) { c2v b; b.x = a.y; b.y = -a.x; return b; }
|
||
|
C2_INLINE float c2Det2(c2v a, c2v b) { return a.x * b.y - a.y * b.x; }
|
||
|
C2_INLINE c2v c2Minv(c2v a, c2v b) { return c2V(c2Min(a.x, b.x), c2Min(a.y, b.y)); }
|
||
|
C2_INLINE c2v c2Maxv(c2v a, c2v b) { return c2V(c2Max(a.x, b.x), c2Max(a.y, b.y)); }
|
||
|
C2_INLINE c2v c2Clampv(c2v a, c2v lo, c2v hi) { return c2Maxv(lo, c2Minv(a, hi)); }
|
||
|
C2_INLINE c2v c2Absv(c2v a) { return c2V(c2Abs(a.x), c2Abs(a.y)); }
|
||
|
C2_INLINE float c2Hmin(c2v a) { return c2Min(a.x, a.y); }
|
||
|
C2_INLINE float c2Hmax(c2v a) { return c2Max(a.x, a.y); }
|
||
|
C2_INLINE float c2Len(c2v a) { return c2Sqrt(c2Dot(a, a)); }
|
||
|
C2_INLINE c2v c2Norm(c2v a) { return c2Div(a, c2Len(a)); }
|
||
|
C2_INLINE c2v c2SafeNorm(c2v a) { float sq = c2Dot(a, a); return sq ? c2Div(a, c2Len(a)) : c2V(0, 0); }
|
||
|
C2_INLINE c2v c2Neg(c2v a) { return c2V(-a.x, -a.y); }
|
||
|
C2_INLINE c2v c2Lerp(c2v a, c2v b, float t) { return c2Add(a, c2Mulvs(c2Sub(b, a), t)); }
|
||
|
C2_INLINE int c2Parallel(c2v a, c2v b, float kTol)
|
||
|
{
|
||
|
float k = c2Len(a) / c2Len(b);
|
||
|
b = c2Mulvs(b, k);
|
||
|
if (c2Abs(a.x - b.x) < kTol && c2Abs(a.y - b.y) < kTol) return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// rotation ops
|
||
|
C2_INLINE c2r c2Rot(float radians) { c2r r; c2SinCos(radians, &r.s, &r.c); return r; }
|
||
|
C2_INLINE c2r c2RotIdentity(void) { c2r r; r.c = 1.0f; r.s = 0; return r; }
|
||
|
C2_INLINE c2v c2RotX(c2r r) { return c2V(r.c, r.s); }
|
||
|
C2_INLINE c2v c2RotY(c2r r) { return c2V(-r.s, r.c); }
|
||
|
C2_INLINE c2v c2Mulrv(c2r a, c2v b) { return c2V(a.c * b.x - a.s * b.y, a.s * b.x + a.c * b.y); }
|
||
|
C2_INLINE c2v c2MulrvT(c2r a, c2v b) { return c2V(a.c * b.x + a.s * b.y, -a.s * b.x + a.c * b.y); }
|
||
|
C2_INLINE c2r c2Mulrr(c2r a, c2r b) { c2r c; c.c = a.c * b.c - a.s * b.s; c.s = a.s * b.c + a.c * b.s; return c; }
|
||
|
C2_INLINE c2r c2MulrrT(c2r a, c2r b) { c2r c; c.c = a.c * b.c + a.s * b.s; c.s = a.c * b.s - a.s * b.c; return c; }
|
||
|
|
||
|
C2_INLINE c2v c2Mulmv(c2m a, c2v b) { c2v c; c.x = a.x.x * b.x + a.y.x * b.y; c.y = a.x.y * b.x + a.y.y * b.y; return c; }
|
||
|
C2_INLINE c2v c2MulmvT(c2m a, c2v b) { c2v c; c.x = a.x.x * b.x + a.x.y * b.y; c.y = a.y.x * b.x + a.y.y * b.y; return c; }
|
||
|
C2_INLINE c2m c2Mulmm(c2m a, c2m b) { c2m c; c.x = c2Mulmv(a, b.x); c.y = c2Mulmv(a, b.y); return c; }
|
||
|
C2_INLINE c2m c2MulmmT(c2m a, c2m b) { c2m c; c.x = c2MulmvT(a, b.x); c.y = c2MulmvT(a, b.y); return c; }
|
||
|
|
||
|
// transform ops
|
||
|
C2_INLINE c2x c2xIdentity(void) { c2x x; x.p = c2V(0, 0); x.r = c2RotIdentity(); return x; }
|
||
|
C2_INLINE c2v c2Mulxv(c2x a, c2v b) { return c2Add(c2Mulrv(a.r, b), a.p); }
|
||
|
C2_INLINE c2v c2MulxvT(c2x a, c2v b) { return c2MulrvT(a.r, c2Sub(b, a.p)); }
|
||
|
C2_INLINE c2x c2Mulxx(c2x a, c2x b) { c2x c; c.r = c2Mulrr(a.r, b.r); c.p = c2Add(c2Mulrv(a.r, b.p), a.p); return c; }
|
||
|
C2_INLINE c2x c2MulxxT(c2x a, c2x b) { c2x c; c.r = c2MulrrT(a.r, b.r); c.p = c2MulrvT(a.r, c2Sub(b.p, a.p)); return c; }
|
||
|
C2_INLINE c2x c2Transform(c2v p, float radians) { c2x x; x.r = c2Rot(radians); x.p = p; return x; }
|
||
|
|
||
|
// halfspace ops
|
||
|
C2_INLINE c2v c2Origin(c2h h) { return c2Mulvs(h.n, h.d); }
|
||
|
C2_INLINE float c2Dist(c2h h, c2v p) { return c2Dot(h.n, p) - h.d; }
|
||
|
C2_INLINE c2v c2Project(c2h h, c2v p) { return c2Sub(p, c2Mulvs(h.n, c2Dist(h, p))); }
|
||
|
C2_INLINE c2h c2Mulxh(c2x a, c2h b) { c2h c; c.n = c2Mulrv(a.r, b.n); c.d = c2Dot(c2Mulxv(a, c2Origin(b)), c.n); return c; }
|
||
|
C2_INLINE c2h c2MulxhT(c2x a, c2h b) { c2h c; c.n = c2MulrvT(a.r, b.n); c.d = c2Dot(c2MulxvT(a, c2Origin(b)), c.n); return c; }
|
||
|
C2_INLINE c2v c2Intersect(c2v a, c2v b, float da, float db) { return c2Add(a, c2Mulvs(c2Sub(b, a), (da / (da - db)))); }
|
||
|
|
||
|
C2_INLINE void c2BBVerts(c2v* out, c2AABB* bb)
|
||
|
{
|
||
|
out[0] = bb->min;
|
||
|
out[1] = c2V(bb->max.x, bb->min.y);
|
||
|
out[2] = bb->max;
|
||
|
out[3] = c2V(bb->min.x, bb->max.y);
|
||
|
}
|
||
|
|
||
|
#define CUTE_C2_H
|
||
|
#endif
|
||
|
|
||
|
#ifdef CUTE_C2_IMPLEMENTATION
|
||
|
#ifndef CUTE_C2_IMPLEMENTATION_ONCE
|
||
|
#define CUTE_C2_IMPLEMENTATION_ONCE
|
||
|
|
||
|
int c2Collided(const void* A, const c2x* ax, C2_TYPE typeA, const void* B, const c2x* bx, C2_TYPE typeB)
|
||
|
{
|
||
|
switch (typeA)
|
||
|
{
|
||
|
case C2_TYPE_CIRCLE:
|
||
|
switch (typeB)
|
||
|
{
|
||
|
case C2_TYPE_CIRCLE: return c2CircletoCircle(*(c2Circle*)A, *(c2Circle*)B);
|
||
|
case C2_TYPE_AABB: return c2CircletoAABB(*(c2Circle*)A, *(c2AABB*)B);
|
||
|
case C2_TYPE_CAPSULE: return c2CircletoCapsule(*(c2Circle*)A, *(c2Capsule*)B);
|
||
|
case C2_TYPE_POLY: return c2CircletoPoly(*(c2Circle*)A, (const c2Poly*)B, bx);
|
||
|
default: return 0;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case C2_TYPE_AABB:
|
||
|
switch (typeB)
|
||
|
{
|
||
|
case C2_TYPE_CIRCLE: return c2CircletoAABB(*(c2Circle*)B, *(c2AABB*)A);
|
||
|
case C2_TYPE_AABB: return c2AABBtoAABB(*(c2AABB*)A, *(c2AABB*)B);
|
||
|
case C2_TYPE_CAPSULE: return c2AABBtoCapsule(*(c2AABB*)A, *(c2Capsule*)B);
|
||
|
case C2_TYPE_POLY: return c2AABBtoPoly(*(c2AABB*)A, (const c2Poly*)B, bx);
|
||
|
default: return 0;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case C2_TYPE_CAPSULE:
|
||
|
switch (typeB)
|
||
|
{
|
||
|
case C2_TYPE_CIRCLE: return c2CircletoCapsule(*(c2Circle*)B, *(c2Capsule*)A);
|
||
|
case C2_TYPE_AABB: return c2AABBtoCapsule(*(c2AABB*)B, *(c2Capsule*)A);
|
||
|
case C2_TYPE_CAPSULE: return c2CapsuletoCapsule(*(c2Capsule*)A, *(c2Capsule*)B);
|
||
|
case C2_TYPE_POLY: return c2CapsuletoPoly(*(c2Capsule*)A, (const c2Poly*)B, bx);
|
||
|
default: return 0;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case C2_TYPE_POLY:
|
||
|
switch (typeB)
|
||
|
{
|
||
|
case C2_TYPE_CIRCLE: return c2CircletoPoly(*(c2Circle*)B, (const c2Poly*)A, ax);
|
||
|
case C2_TYPE_AABB: return c2AABBtoPoly(*(c2AABB*)B, (const c2Poly*)A, ax);
|
||
|
case C2_TYPE_CAPSULE: return c2CapsuletoPoly(*(c2Capsule*)B, (const c2Poly*)A, ax);
|
||
|
case C2_TYPE_POLY: return c2PolytoPoly((const c2Poly*)A, ax, (const c2Poly*)B, bx);
|
||
|
default: return 0;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void c2Collide(const void* A, const c2x* ax, C2_TYPE typeA, const void* B, const c2x* bx, C2_TYPE typeB, c2Manifold* m)
|
||
|
{
|
||
|
m->count = 0;
|
||
|
|
||
|
switch (typeA)
|
||
|
{
|
||
|
case C2_TYPE_CIRCLE:
|
||
|
switch (typeB)
|
||
|
{
|
||
|
case C2_TYPE_CIRCLE: c2CircletoCircleManifold(*(c2Circle*)A, *(c2Circle*)B, m); break;
|
||
|
case C2_TYPE_AABB: c2CircletoAABBManifold(*(c2Circle*)A, *(c2AABB*)B, m); break;
|
||
|
case C2_TYPE_CAPSULE: c2CircletoCapsuleManifold(*(c2Circle*)A, *(c2Capsule*)B, m); break;
|
||
|
case C2_TYPE_POLY: c2CircletoPolyManifold(*(c2Circle*)A, (const c2Poly*)B, bx, m); break;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case C2_TYPE_AABB:
|
||
|
switch (typeB)
|
||
|
{
|
||
|
case C2_TYPE_CIRCLE: c2CircletoAABBManifold(*(c2Circle*)B, *(c2AABB*)A, m); m->n = c2Neg(m->n); break;
|
||
|
case C2_TYPE_AABB: c2AABBtoAABBManifold(*(c2AABB*)A, *(c2AABB*)B, m); break;
|
||
|
case C2_TYPE_CAPSULE: c2AABBtoCapsuleManifold(*(c2AABB*)A, *(c2Capsule*)B, m); break;
|
||
|
case C2_TYPE_POLY: c2AABBtoPolyManifold(*(c2AABB*)A, (const c2Poly*)B, bx, m); break;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case C2_TYPE_CAPSULE:
|
||
|
switch (typeB)
|
||
|
{
|
||
|
case C2_TYPE_CIRCLE: c2CircletoCapsuleManifold(*(c2Circle*)B, *(c2Capsule*)A, m); m->n = c2Neg(m->n); break;
|
||
|
case C2_TYPE_AABB: c2AABBtoCapsuleManifold(*(c2AABB*)B, *(c2Capsule*)A, m); m->n = c2Neg(m->n); break;
|
||
|
case C2_TYPE_CAPSULE: c2CapsuletoCapsuleManifold(*(c2Capsule*)A, *(c2Capsule*)B, m); break;
|
||
|
case C2_TYPE_POLY: c2CapsuletoPolyManifold(*(c2Capsule*)A, (const c2Poly*)B, bx, m); break;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case C2_TYPE_POLY:
|
||
|
switch (typeB)
|
||
|
{
|
||
|
case C2_TYPE_CIRCLE: c2CircletoPolyManifold(*(c2Circle*)B, (const c2Poly*)A, ax, m); m->n = c2Neg(m->n); break;
|
||
|
case C2_TYPE_AABB: c2AABBtoPolyManifold(*(c2AABB*)B, (const c2Poly*)A, ax, m); m->n = c2Neg(m->n); break;
|
||
|
case C2_TYPE_CAPSULE: c2CapsuletoPolyManifold(*(c2Capsule*)B, (const c2Poly*)A, ax, m); m->n = c2Neg(m->n); break;
|
||
|
case C2_TYPE_POLY: c2PolytoPolyManifold((const c2Poly*)A, ax, (const c2Poly*)B, bx, m); break;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int c2CastRay(c2Ray A, const void* B, const c2x* bx, C2_TYPE typeB, c2Raycast* out)
|
||
|
{
|
||
|
switch (typeB)
|
||
|
{
|
||
|
case C2_TYPE_CIRCLE: return c2RaytoCircle(A, *(c2Circle*)B, out);
|
||
|
case C2_TYPE_AABB: return c2RaytoAABB(A, *(c2AABB*)B, out);
|
||
|
case C2_TYPE_CAPSULE: return c2RaytoCapsule(A, *(c2Capsule*)B, out);
|
||
|
case C2_TYPE_POLY: return c2RaytoPoly(A, (const c2Poly*)B, bx, out);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define C2_GJK_ITERS 20
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
float radius;
|
||
|
int count;
|
||
|
c2v verts[C2_MAX_POLYGON_VERTS];
|
||
|
} c2Proxy;
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
c2v sA;
|
||
|
c2v sB;
|
||
|
c2v p;
|
||
|
float u;
|
||
|
int iA;
|
||
|
int iB;
|
||
|
} c2sv;
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
c2sv a, b, c, d;
|
||
|
float div;
|
||
|
int count;
|
||
|
} c2Simplex;
|
||
|
|
||
|
static C2_INLINE void c2MakeProxy(const void* shape, C2_TYPE type, c2Proxy* p)
|
||
|
{
|
||
|
switch (type)
|
||
|
{
|
||
|
case C2_TYPE_CIRCLE:
|
||
|
{
|
||
|
c2Circle* c = (c2Circle*)shape;
|
||
|
p->radius = c->r;
|
||
|
p->count = 1;
|
||
|
p->verts[0] = c->p;
|
||
|
} break;
|
||
|
|
||
|
case C2_TYPE_AABB:
|
||
|
{
|
||
|
c2AABB* bb = (c2AABB*)shape;
|
||
|
p->radius = 0;
|
||
|
p->count = 4;
|
||
|
c2BBVerts(p->verts, bb);
|
||
|
} break;
|
||
|
|
||
|
case C2_TYPE_CAPSULE:
|
||
|
{
|
||
|
c2Capsule* c = (c2Capsule*)shape;
|
||
|
p->radius = c->r;
|
||
|
p->count = 2;
|
||
|
p->verts[0] = c->a;
|
||
|
p->verts[1] = c->b;
|
||
|
} break;
|
||
|
|
||
|
case C2_TYPE_POLY:
|
||
|
{
|
||
|
c2Poly* poly = (c2Poly*)shape;
|
||
|
p->radius = 0;
|
||
|
p->count = poly->count;
|
||
|
for (int i = 0; i < p->count; ++i) p->verts[i] = poly->verts[i];
|
||
|
} break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static C2_INLINE int c2Support(const c2v* verts, int count, c2v d)
|
||
|
{
|
||
|
int imax = 0;
|
||
|
float dmax = c2Dot(verts[0], d);
|
||
|
|
||
|
for (int i = 1; i < count; ++i)
|
||
|
{
|
||
|
float dot = c2Dot(verts[i], d);
|
||
|
if (dot > dmax)
|
||
|
{
|
||
|
imax = i;
|
||
|
dmax = dot;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return imax;
|
||
|
}
|
||
|
|
||
|
#define C2_BARY(n, x) c2Mulvs(s->n.x, (den * s->n.u))
|
||
|
#define C2_BARY2(x) c2Add(C2_BARY(a, x), C2_BARY(b, x))
|
||
|
#define C2_BARY3(x) c2Add(c2Add(C2_BARY(a, x), C2_BARY(b, x)), C2_BARY(c, x))
|
||
|
|
||
|
static C2_INLINE c2v c2L(c2Simplex* s)
|
||
|
{
|
||
|
float den = 1.0f / s->div;
|
||
|
switch (s->count)
|
||
|
{
|
||
|
case 1: return s->a.p;
|
||
|
case 2: return C2_BARY2(p);
|
||
|
default: return c2V(0, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static C2_INLINE void c2Witness(c2Simplex* s, c2v* a, c2v* b)
|
||
|
{
|
||
|
float den = 1.0f / s->div;
|
||
|
switch (s->count)
|
||
|
{
|
||
|
case 1: *a = s->a.sA; *b = s->a.sB; break;
|
||
|
case 2: *a = C2_BARY2(sA); *b = C2_BARY2(sB); break;
|
||
|
case 3: *a = C2_BARY3(sA); *b = C2_BARY3(sB); break;
|
||
|
default: *a = c2V(0, 0); *b = c2V(0, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static C2_INLINE c2v c2D(c2Simplex* s)
|
||
|
{
|
||
|
switch (s->count)
|
||
|
{
|
||
|
case 1: return c2Neg(s->a.p);
|
||
|
case 2:
|
||
|
{
|
||
|
c2v ab = c2Sub(s->b.p, s->a.p);
|
||
|
if (c2Det2(ab, c2Neg(s->a.p)) > 0) return c2Skew(ab);
|
||
|
return c2CCW90(ab);
|
||
|
}
|
||
|
case 3:
|
||
|
default: return c2V(0, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static C2_INLINE void c22(c2Simplex* s)
|
||
|
{
|
||
|
c2v a = s->a.p;
|
||
|
c2v b = s->b.p;
|
||
|
float u = c2Dot(b, c2Sub(b, a));
|
||
|
float v = c2Dot(a, c2Sub(a, b));
|
||
|
|
||
|
if (v <= 0)
|
||
|
{
|
||
|
s->a.u = 1.0f;
|
||
|
s->div = 1.0f;
|
||
|
s->count = 1;
|
||
|
}
|
||
|
|
||
|
else if (u <= 0)
|
||
|
{
|
||
|
s->a = s->b;
|
||
|
s->a.u = 1.0f;
|
||
|
s->div = 1.0f;
|
||
|
s->count = 1;
|
||
|
}
|
||
|
|
||
|
else
|
||
|
{
|
||
|
s->a.u = u;
|
||
|
s->b.u = v;
|
||
|
s->div = u + v;
|
||
|
s->count = 2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static C2_INLINE void c23(c2Simplex* s)
|
||
|
{
|
||
|
c2v a = s->a.p;
|
||
|
c2v b = s->b.p;
|
||
|
c2v c = s->c.p;
|
||
|
|
||
|
float uAB = c2Dot(b, c2Sub(b, a));
|
||
|
float vAB = c2Dot(a, c2Sub(a, b));
|
||
|
float uBC = c2Dot(c, c2Sub(c, b));
|
||
|
float vBC = c2Dot(b, c2Sub(b, c));
|
||
|
float uCA = c2Dot(a, c2Sub(a, c));
|
||
|
float vCA = c2Dot(c, c2Sub(c, a));
|
||
|
float area = c2Det2(c2Sub(b, a), c2Sub(c, a));
|
||
|
float uABC = c2Det2(b, c) * area;
|
||
|
float vABC = c2Det2(c, a) * area;
|
||
|
float wABC = c2Det2(a, b) * area;
|
||
|
|
||
|
if (vAB <= 0 && uCA <= 0)
|
||
|
{
|
||
|
s->a.u = 1.0f;
|
||
|
s->div = 1.0f;
|
||
|
s->count = 1;
|
||
|
}
|
||
|
|
||
|
else if (uAB <= 0 && vBC <= 0)
|
||
|
{
|
||
|
s->a = s->b;
|
||
|
s->a.u = 1.0f;
|
||
|
s->div = 1.0f;
|
||
|
s->count = 1;
|
||
|
}
|
||
|
|
||
|
else if (uBC <= 0 && vCA <= 0)
|
||
|
{
|
||
|
s->a = s->c;
|
||
|
s->a.u = 1.0f;
|
||
|
s->div = 1.0f;
|
||
|
s->count = 1;
|
||
|
}
|
||
|
|
||
|
else if (uAB > 0 && vAB > 0 && wABC <= 0)
|
||
|
{
|
||
|
s->a.u = uAB;
|
||
|
s->b.u = vAB;
|
||
|
s->div = uAB + vAB;
|
||
|
s->count = 2;
|
||
|
}
|
||
|
|
||
|
else if (uBC > 0 && vBC > 0 && uABC <= 0)
|
||
|
{
|
||
|
s->a = s->b;
|
||
|
s->b = s->c;
|
||
|
s->a.u = uBC;
|
||
|
s->b.u = vBC;
|
||
|
s->div = uBC + vBC;
|
||
|
s->count = 2;
|
||
|
}
|
||
|
|
||
|
else if (uCA > 0 && vCA > 0 && vABC <= 0)
|
||
|
{
|
||
|
s->b = s->a;
|
||
|
s->a = s->c;
|
||
|
s->a.u = uCA;
|
||
|
s->b.u = vCA;
|
||
|
s->div = uCA + vCA;
|
||
|
s->count = 2;
|
||
|
}
|
||
|
|
||
|
else
|
||
|
{
|
||
|
s->a.u = uABC;
|
||
|
s->b.u = vABC;
|
||
|
s->c.u = wABC;
|
||
|
s->div = uABC + vABC + wABC;
|
||
|
s->count = 3;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#include <float.h>
|
||
|
|
||
|
static C2_INLINE float c2GJKSimplexMetric(c2Simplex* s)
|
||
|
{
|
||
|
switch (s->count)
|
||
|
{
|
||
|
default: // fall through
|
||
|
case 1: return 0;
|
||
|
case 2: return c2Len(c2Sub(s->b.p, s->a.p));
|
||
|
case 3: return c2Det2(c2Sub(s->b.p, s->a.p), c2Sub(s->c.p, s->a.p));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Please see http://box2d.org/downloads/ under GDC 2010 for Erin's demo code
|
||
|
// and PDF slides for documentation on the GJK algorithm. This function is mostly
|
||
|
// from Erin's version from his online resources.
|
||
|
float c2GJK(const void* A, C2_TYPE typeA, const c2x* ax_ptr, const void* B, C2_TYPE typeB, const c2x* bx_ptr, c2v* outA, c2v* outB, int use_radius, int* iterations, c2GJKCache* cache)
|
||
|
{
|
||
|
c2x ax;
|
||
|
c2x bx;
|
||
|
if (!ax_ptr) ax = c2xIdentity();
|
||
|
else ax = *ax_ptr;
|
||
|
if (!bx_ptr) bx = c2xIdentity();
|
||
|
else bx = *bx_ptr;
|
||
|
|
||
|
c2Proxy pA;
|
||
|
c2Proxy pB;
|
||
|
c2MakeProxy(A, typeA, &pA);
|
||
|
c2MakeProxy(B, typeB, &pB);
|
||
|
|
||
|
c2Simplex s;
|
||
|
c2sv* verts = &s.a;
|
||
|
|
||
|
// Metric and caching system as designed by E. Catto in Box2D for his conservative advancment/bilateral
|
||
|
// advancement algorithim implementations. The purpose is to reuse old simplex indices (any simplex that
|
||
|
// have not degenerated into a line or point) as a starting point. This skips the first few iterations of
|
||
|
// GJK going from point, to line, to triangle, lowering convergence rates dramatically for temporally
|
||
|
// coherent cases (such as in time of impact searches).
|
||
|
int cache_was_read = 0;
|
||
|
if (cache)
|
||
|
{
|
||
|
int cache_was_good = !!cache->count;
|
||
|
|
||
|
if (cache_was_good)
|
||
|
{
|
||
|
for (int i = 0; i < cache->count; ++i)
|
||
|
{
|
||
|
int iA = cache->iA[i];
|
||
|
int iB = cache->iB[i];
|
||
|
c2v sA = c2Mulxv(ax, pA.verts[iA]);
|
||
|
c2v sB = c2Mulxv(bx, pB.verts[iB]);
|
||
|
c2sv* v = verts + i;
|
||
|
v->iA = iA;
|
||
|
v->sA = sA;
|
||
|
v->iB = iB;
|
||
|
v->sB = sB;
|
||
|
v->p = c2Sub(v->sB, v->sA);
|
||
|
v->u = 0;
|
||
|
}
|
||
|
s.count = cache->count;
|
||
|
s.div = cache->div;
|
||
|
|
||
|
float metric_old = cache->metric;
|
||
|
float metric = c2GJKSimplexMetric(&s);
|
||
|
|
||
|
float min_metric = metric < metric_old ? metric : metric_old;
|
||
|
float max_metric = metric > metric_old ? metric : metric_old;
|
||
|
|
||
|
if (!(min_metric < max_metric * 2.0f && metric < -1.0e8f)) cache_was_read = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!cache_was_read)
|
||
|
{
|
||
|
s.a.iA = 0;
|
||
|
s.a.iB = 0;
|
||
|
s.a.sA = c2Mulxv(ax, pA.verts[0]);
|
||
|
s.a.sB = c2Mulxv(bx, pB.verts[0]);
|
||
|
s.a.p = c2Sub(s.a.sB, s.a.sA);
|
||
|
s.a.u = 1.0f;
|
||
|
s.div = 1.0f;
|
||
|
s.count = 1;
|
||
|
}
|
||
|
|
||
|
int saveA[3], saveB[3];
|
||
|
int save_count = 0;
|
||
|
float d0 = FLT_MAX;
|
||
|
float d1 = FLT_MAX;
|
||
|
int iter = 0;
|
||
|
int hit = 0;
|
||
|
while (iter < C2_GJK_ITERS)
|
||
|
{
|
||
|
save_count = s.count;
|
||
|
for (int i = 0; i < save_count; ++i)
|
||
|
{
|
||
|
saveA[i] = verts[i].iA;
|
||
|
saveB[i] = verts[i].iB;
|
||
|
}
|
||
|
|
||
|
switch (s.count)
|
||
|
{
|
||
|
case 1: break;
|
||
|
case 2: c22(&s); break;
|
||
|
case 3: c23(&s); break;
|
||
|
}
|
||
|
|
||
|
if (s.count == 3)
|
||
|
{
|
||
|
hit = 1;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
c2v p = c2L(&s);
|
||
|
d1 = c2Dot(p, p);
|
||
|
|
||
|
if (d1 > d0) break;
|
||
|
d0 = d1;
|
||
|
|
||
|
c2v d = c2D(&s);
|
||
|
if (c2Dot(d, d) < FLT_EPSILON * FLT_EPSILON) break;
|
||
|
|
||
|
int iA = c2Support(pA.verts, pA.count, c2MulrvT(ax.r, c2Neg(d)));
|
||
|
c2v sA = c2Mulxv(ax, pA.verts[iA]);
|
||
|
int iB = c2Support(pB.verts, pB.count, c2MulrvT(bx.r, d));
|
||
|
c2v sB = c2Mulxv(bx, pB.verts[iB]);
|
||
|
|
||
|
c2sv* v = verts + s.count;
|
||
|
v->iA = iA;
|
||
|
v->sA = sA;
|
||
|
v->iB = iB;
|
||
|
v->sB = sB;
|
||
|
v->p = c2Sub(v->sB, v->sA);
|
||
|
|
||
|
int dup = 0;
|
||
|
for (int i = 0; i < save_count; ++i)
|
||
|
{
|
||
|
if (iA == saveA[i] && iB == saveB[i])
|
||
|
{
|
||
|
dup = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (dup) break;
|
||
|
|
||
|
++s.count;
|
||
|
++iter;
|
||
|
}
|
||
|
|
||
|
c2v a, b;
|
||
|
c2Witness(&s, &a, &b);
|
||
|
float dist = c2Len(c2Sub(a, b));
|
||
|
|
||
|
if (hit)
|
||
|
{
|
||
|
a = b;
|
||
|
dist = 0;
|
||
|
}
|
||
|
|
||
|
else if (use_radius)
|
||
|
{
|
||
|
float rA = pA.radius;
|
||
|
float rB = pB.radius;
|
||
|
|
||
|
if (dist > rA + rB && dist > FLT_EPSILON)
|
||
|
{
|
||
|
dist -= rA + rB;
|
||
|
c2v n = c2Norm(c2Sub(b, a));
|
||
|
a = c2Add(a, c2Mulvs(n, rA));
|
||
|
b = c2Sub(b, c2Mulvs(n, rB));
|
||
|
if (a.x == b.x && a.y == b.y) dist = 0;
|
||
|
}
|
||
|
|
||
|
else
|
||
|
{
|
||
|
c2v p = c2Mulvs(c2Add(a, b), 0.5f);
|
||
|
a = p;
|
||
|
b = p;
|
||
|
dist = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (cache)
|
||
|
{
|
||
|
cache->metric = c2GJKSimplexMetric(&s);
|
||
|
cache->count = s.count;
|
||
|
for (int i = 0; i < s.count; ++i)
|
||
|
{
|
||
|
c2sv* v = verts + i;
|
||
|
cache->iA[i] = v->iA;
|
||
|
cache->iB[i] = v->iB;
|
||
|
}
|
||
|
cache->div = s.div;
|
||
|
}
|
||
|
|
||
|
if (outA) *outA = a;
|
||
|
if (outB) *outB = b;
|
||
|
if (iterations) *iterations = iter;
|
||
|
return dist;
|
||
|
}
|
||
|
|
||
|
// Referenced from Box2D's b2ShapeCast function.
|
||
|
// GJK-Raycast algorithm by Gino van den Bergen.
|
||
|
// "Smooth Mesh Contacts with GJK" in Game Physics Pearls, 2010.
|
||
|
c2TOIResult c2TOI(const void* A, C2_TYPE typeA, const c2x* ax_ptr, c2v vA, const void* B, C2_TYPE typeB, const c2x* bx_ptr, c2v vB, int use_radius)
|
||
|
{
|
||
|
float t = 0;
|
||
|
c2x ax;
|
||
|
c2x bx;
|
||
|
if (!ax_ptr) ax = c2xIdentity();
|
||
|
else ax = *ax_ptr;
|
||
|
if (!bx_ptr) bx = c2xIdentity();
|
||
|
else bx = *bx_ptr;
|
||
|
|
||
|
c2Proxy pA;
|
||
|
c2Proxy pB;
|
||
|
c2MakeProxy(A, typeA, &pA);
|
||
|
c2MakeProxy(B, typeB, &pB);
|
||
|
|
||
|
c2Simplex s;
|
||
|
s.count = 0;
|
||
|
c2sv* verts = &s.a;
|
||
|
|
||
|
c2v rv = c2Sub(vB, vA);
|
||
|
int iA = c2Support(pA.verts, pA.count, c2MulrvT(ax.r, c2Neg(rv)));
|
||
|
c2v sA = c2Mulxv(ax, pA.verts[iA]);
|
||
|
int iB = c2Support(pB.verts, pB.count, c2MulrvT(bx.r, rv));
|
||
|
c2v sB = c2Mulxv(bx, pB.verts[iB]);
|
||
|
c2v v = c2Sub(sA, sB);
|
||
|
|
||
|
float rA = pA.radius;
|
||
|
float rB = pB.radius;
|
||
|
float radius = rA + rB;
|
||
|
if (!use_radius) {
|
||
|
rA = 0;
|
||
|
rB = 0;
|
||
|
radius = 0;
|
||
|
}
|
||
|
float tolerance = 1.0e-4f;
|
||
|
|
||
|
c2TOIResult result;
|
||
|
result.hit = 0;
|
||
|
result.n = c2V(0, 0);
|
||
|
result.p = c2V(0, 0);
|
||
|
result.toi = 1.0f;
|
||
|
result.iterations = 0;
|
||
|
|
||
|
while (result.iterations < 20 && c2Len(v) - radius > tolerance)
|
||
|
{
|
||
|
iA = c2Support(pA.verts, pA.count, c2MulrvT(ax.r, c2Neg(v)));
|
||
|
sA = c2Mulxv(ax, pA.verts[iA]);
|
||
|
iB = c2Support(pB.verts, pB.count, c2MulrvT(bx.r, v));
|
||
|
sB = c2Mulxv(bx, pB.verts[iB]);
|
||
|
c2v p = c2Sub(sA, sB);
|
||
|
v = c2Norm(v);
|
||
|
float vp = c2Dot(v, p) - radius;
|
||
|
float vr = c2Dot(v, rv);
|
||
|
if (vp > t * vr) {
|
||
|
if (vr <= 0) return result;
|
||
|
t = vp / vr;
|
||
|
if (t > 1.0f) return result;
|
||
|
result.n = c2Neg(v);
|
||
|
s.count = 0;
|
||
|
}
|
||
|
|
||
|
c2sv* sv = verts + s.count;
|
||
|
sv->iA = iB;
|
||
|
sv->sA = c2Add(sB, c2Mulvs(rv, t));
|
||
|
sv->iB = iA;
|
||
|
sv->sB = sA;
|
||
|
sv->p = c2Sub(sv->sB, sv->sA);
|
||
|
sv->u = 1.0f;
|
||
|
s.count += 1;
|
||
|
|
||
|
switch (s.count)
|
||
|
{
|
||
|
case 2: c22(&s); break;
|
||
|
case 3: c23(&s); break;
|
||
|
}
|
||
|
|
||
|
if (s.count == 3) {
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
v = c2L(&s);
|
||
|
result.iterations++;
|
||
|
}
|
||
|
|
||
|
if (result.iterations == 0) {
|
||
|
result.hit = 0;
|
||
|
} else {
|
||
|
if (c2Dot(v, v) > 0) result.n = c2SafeNorm(c2Neg(v));
|
||
|
int i = c2Support(pA.verts, pA.count, c2MulrvT(ax.r, result.n));
|
||
|
c2v p = c2Mulxv(ax, pA.verts[i]);
|
||
|
p = c2Add(c2Add(p, c2Mulvs(result.n, rA)), c2Mulvs(vA, t));
|
||
|
result.p = p;
|
||
|
result.toi = t;
|
||
|
result.hit = 1;
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
int c2Hull(c2v* verts, int count)
|
||
|
{
|
||
|
if (count <= 2) return 0;
|
||
|
count = c2Min(C2_MAX_POLYGON_VERTS, count);
|
||
|
|
||
|
int right = 0;
|
||
|
float xmax = verts[0].x;
|
||
|
for (int i = 1; i < count; ++i)
|
||
|
{
|
||
|
float x = verts[i].x;
|
||
|
if (x > xmax)
|
||
|
{
|
||
|
xmax = x;
|
||
|
right = i;
|
||
|
}
|
||
|
|
||
|
else if (x == xmax)
|
||
|
if (verts[i].y < verts[right].y) right = i;
|
||
|
}
|
||
|
|
||
|
int hull[C2_MAX_POLYGON_VERTS];
|
||
|
int out_count = 0;
|
||
|
int index = right;
|
||
|
|
||
|
while (1)
|
||
|
{
|
||
|
hull[out_count] = index;
|
||
|
int next = 0;
|
||
|
|
||
|
for (int i = 1; i < count; ++i)
|
||
|
{
|
||
|
if (next == index)
|
||
|
{
|
||
|
next = i;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
c2v e1 = c2Sub(verts[next], verts[hull[out_count]]);
|
||
|
c2v e2 = c2Sub(verts[i], verts[hull[out_count]]);
|
||
|
float c = c2Det2(e1, e2);
|
||
|
if(c < 0) next = i;
|
||
|
if (c == 0 && c2Dot(e2, e2) > c2Dot(e1, e1)) next = i;
|
||
|
}
|
||
|
|
||
|
++out_count;
|
||
|
index = next;
|
||
|
if (next == right) break;
|
||
|
}
|
||
|
|
||
|
c2v hull_verts[C2_MAX_POLYGON_VERTS];
|
||
|
for (int i = 0; i < out_count; ++i) hull_verts[i] = verts[hull[i]];
|
||
|
memcpy(verts, hull_verts, sizeof(c2v) * out_count);
|
||
|
return out_count;
|
||
|
}
|
||
|
|
||
|
void c2Norms(c2v* verts, c2v* norms, int count)
|
||
|
{
|
||
|
for (int i = 0; i < count; ++i)
|
||
|
{
|
||
|
int a = i;
|
||
|
int b = i + 1 < count ? i + 1 : 0;
|
||
|
c2v e = c2Sub(verts[b], verts[a]);
|
||
|
norms[i] = c2Norm(c2CCW90(e));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void c2MakePoly(c2Poly* p)
|
||
|
{
|
||
|
p->count = c2Hull(p->verts, p->count);
|
||
|
c2Norms(p->verts, p->norms, p->count);
|
||
|
}
|
||
|
|
||
|
c2Poly c2Dual(c2Poly poly, float skin_factor)
|
||
|
{
|
||
|
c2Poly dual;
|
||
|
dual.count = poly.count;
|
||
|
|
||
|
// Each plane maps to a point by involution (the mapping is its own inverse) by dividing
|
||
|
// the plane normal by its offset factor.
|
||
|
// plane = a * x + b * y - d
|
||
|
// dual = { a / d, b / d }
|
||
|
for (int i = 0; i < poly.count; ++i) {
|
||
|
c2v n = poly.norms[i];
|
||
|
float d = c2Dot(n, poly.verts[i]) - skin_factor;
|
||
|
if (d == 0) dual.verts[i] = c2V(0, 0);
|
||
|
else dual.verts[i] = c2Div(n, d);
|
||
|
}
|
||
|
|
||
|
// Instead of canonically building the convex hull, can simply take advantage of how
|
||
|
// the vertices are still in proper CCW order, so only the normals must be recomputed.
|
||
|
c2Norms(dual.verts, dual.norms, dual.count);
|
||
|
|
||
|
return dual;
|
||
|
}
|
||
|
|
||
|
// Inflating a polytope, idea by Dirk Gregorius ~ 2015. Works in both 2D and 3D.
|
||
|
// Reference: Halfspace intersection with Qhull by Brad Barber
|
||
|
// http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/half.html
|
||
|
//
|
||
|
// Algorithm steps:
|
||
|
// 1. Find a point within the input poly.
|
||
|
// 2. Center this point onto the origin.
|
||
|
// 3. Adjust the planes by a skin factor.
|
||
|
// 4. Compute the dual vert of each plane. Each plane becomes a vertex.
|
||
|
// c2v dual(c2h plane) { return c2V(plane.n.x / plane.d, plane.n.y / plane.d) }
|
||
|
// 5. Compute the convex hull of the dual verts. This is called the dual.
|
||
|
// 6. Compute the dual of the dual, this will be the poly to return.
|
||
|
// 7. Translate the poly away from the origin by the center point from step 2.
|
||
|
// 8. Return the inflated poly.
|
||
|
c2Poly c2InflatePoly(c2Poly poly, float skin_factor)
|
||
|
{
|
||
|
c2v average = poly.verts[0];
|
||
|
for (int i = 1; i < poly.count; ++i) {
|
||
|
average = c2Add(average, poly.verts[i]);
|
||
|
}
|
||
|
average = c2Div(average, (float)poly.count);
|
||
|
|
||
|
for (int i = 0; i < poly.count; ++i) {
|
||
|
poly.verts[i] = c2Sub(poly.verts[i], average);
|
||
|
}
|
||
|
|
||
|
c2Poly dual = c2Dual(poly, skin_factor);
|
||
|
poly = c2Dual(dual, 0);
|
||
|
|
||
|
for (int i = 0; i < poly.count; ++i) {
|
||
|
poly.verts[i] = c2Add(poly.verts[i], average);
|
||
|
}
|
||
|
|
||
|
return poly;
|
||
|
}
|
||
|
|
||
|
void c2Inflate(void* shape, C2_TYPE type, float skin_factor)
|
||
|
{
|
||
|
switch (type)
|
||
|
{
|
||
|
case C2_TYPE_CIRCLE:
|
||
|
{
|
||
|
c2Circle* circle = (c2Circle*)shape;
|
||
|
circle->r += skin_factor;
|
||
|
} break;
|
||
|
|
||
|
case C2_TYPE_AABB:
|
||
|
{
|
||
|
c2AABB* bb = (c2AABB*)shape;
|
||
|
c2v factor = c2V(skin_factor, skin_factor);
|
||
|
bb->min = c2Sub(bb->min, factor);
|
||
|
bb->max = c2Add(bb->max, factor);
|
||
|
} break;
|
||
|
|
||
|
case C2_TYPE_CAPSULE:
|
||
|
{
|
||
|
c2Capsule* capsule = (c2Capsule*)shape;
|
||
|
capsule->r += skin_factor;
|
||
|
} break;
|
||
|
|
||
|
case C2_TYPE_POLY:
|
||
|
{
|
||
|
c2Poly* poly = (c2Poly*)shape;
|
||
|
*poly = c2InflatePoly(*poly, skin_factor);
|
||
|
} break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int c2CircletoCircle(c2Circle A, c2Circle B)
|
||
|
{
|
||
|
c2v c = c2Sub(B.p, A.p);
|
||
|
float d2 = c2Dot(c, c);
|
||
|
float r2 = A.r + B.r;
|
||
|
r2 = r2 * r2;
|
||
|
return d2 < r2;
|
||
|
}
|
||
|
|
||
|
int c2CircletoAABB(c2Circle A, c2AABB B)
|
||
|
{
|
||
|
c2v L = c2Clampv(A.p, B.min, B.max);
|
||
|
c2v ab = c2Sub(A.p, L);
|
||
|
float d2 = c2Dot(ab, ab);
|
||
|
float r2 = A.r * A.r;
|
||
|
return d2 < r2;
|
||
|
}
|
||
|
|
||
|
int c2AABBtoAABB(c2AABB A, c2AABB B)
|
||
|
{
|
||
|
int d0 = B.max.x < A.min.x;
|
||
|
int d1 = A.max.x < B.min.x;
|
||
|
int d2 = B.max.y < A.min.y;
|
||
|
int d3 = A.max.y < B.min.y;
|
||
|
return !(d0 | d1 | d2 | d3);
|
||
|
}
|
||
|
|
||
|
int c2AABBtoPoint(c2AABB A, c2v B)
|
||
|
{
|
||
|
int d0 = B.x < A.min.x;
|
||
|
int d1 = B.y < A.min.y;
|
||
|
int d2 = B.x > A.max.x;
|
||
|
int d3 = B.y > A.max.y;
|
||
|
return !(d0 | d1 | d2 | d3);
|
||
|
}
|
||
|
|
||
|
int c2CircleToPoint(c2Circle A, c2v B)
|
||
|
{
|
||
|
c2v n = c2Sub(A.p, B);
|
||
|
float d2 = c2Dot(n, n);
|
||
|
return d2 < A.r * A.r;
|
||
|
}
|
||
|
|
||
|
// see: http://www.randygaul.net/2014/07/23/distance-point-to-line-segment/
|
||
|
int c2CircletoCapsule(c2Circle A, c2Capsule B)
|
||
|
{
|
||
|
c2v n = c2Sub(B.b, B.a);
|
||
|
c2v ap = c2Sub(A.p, B.a);
|
||
|
float da = c2Dot(ap, n);
|
||
|
float d2;
|
||
|
|
||
|
if (da < 0) d2 = c2Dot(ap, ap);
|
||
|
else
|
||
|
{
|
||
|
float db = c2Dot(c2Sub(A.p, B.b), n);
|
||
|
if (db < 0)
|
||
|
{
|
||
|
c2v e = c2Sub(ap, c2Mulvs(n, (da / c2Dot(n, n))));
|
||
|
d2 = c2Dot(e, e);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
c2v bp = c2Sub(A.p, B.b);
|
||
|
d2 = c2Dot(bp, bp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float r = A.r + B.r;
|
||
|
return d2 < r * r;
|
||
|
}
|
||
|
|
||
|
int c2AABBtoCapsule(c2AABB A, c2Capsule B)
|
||
|
{
|
||
|
if (c2GJK(&A, C2_TYPE_AABB, 0, &B, C2_TYPE_CAPSULE, 0, 0, 0, 1, 0, 0)) return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int c2CapsuletoCapsule(c2Capsule A, c2Capsule B)
|
||
|
{
|
||
|
if (c2GJK(&A, C2_TYPE_CAPSULE, 0, &B, C2_TYPE_CAPSULE, 0, 0, 0, 1, 0, 0)) return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int c2CircletoPoly(c2Circle A, const c2Poly* B, const c2x* bx)
|
||
|
{
|
||
|
if (c2GJK(&A, C2_TYPE_CIRCLE, 0, B, C2_TYPE_POLY, bx, 0, 0, 1, 0, 0)) return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int c2AABBtoPoly(c2AABB A, const c2Poly* B, const c2x* bx)
|
||
|
{
|
||
|
if (c2GJK(&A, C2_TYPE_AABB, 0, B, C2_TYPE_POLY, bx, 0, 0, 1, 0, 0)) return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int c2CapsuletoPoly(c2Capsule A, const c2Poly* B, const c2x* bx)
|
||
|
{
|
||
|
if (c2GJK(&A, C2_TYPE_CAPSULE, 0, B, C2_TYPE_POLY, bx, 0, 0, 1, 0, 0)) return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int c2PolytoPoly(const c2Poly* A, const c2x* ax, const c2Poly* B, const c2x* bx)
|
||
|
{
|
||
|
if (c2GJK(A, C2_TYPE_POLY, ax, B, C2_TYPE_POLY, bx, 0, 0, 1, 0, 0)) return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int c2RaytoCircle(c2Ray A, c2Circle B, c2Raycast* out)
|
||
|
{
|
||
|
c2v p = B.p;
|
||
|
c2v m = c2Sub(A.p, p);
|
||
|
float c = c2Dot(m, m) - B.r * B.r;
|
||
|
float b = c2Dot(m, A.d);
|
||
|
float disc = b * b - c;
|
||
|
if (disc < 0) return 0;
|
||
|
|
||
|
float t = -b - c2Sqrt(disc);
|
||
|
if (t >= 0 && t <= A.t)
|
||
|
{
|
||
|
out->t = t;
|
||
|
c2v impact = c2Impact(A, t);
|
||
|
out->n = c2Norm(c2Sub(impact, p));
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline float c2SignedDistPointToPlane_OneDimensional(float p, float n, float d)
|
||
|
{
|
||
|
return p * n - d * n;
|
||
|
}
|
||
|
|
||
|
static inline float c2RayToPlane_OneDimensional(float da, float db)
|
||
|
{
|
||
|
if (da < 0) return 0; // Ray started behind plane.
|
||
|
else if (da * db >= 0) return 1.0f; // Ray starts and ends on the same of the plane.
|
||
|
else // Ray starts and ends on opposite sides of the plane (or directly on the plane).
|
||
|
{
|
||
|
float d = da - db;
|
||
|
if (d != 0) return da / d;
|
||
|
else return 0; // Special case for super tiny ray, or AABB.
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int c2RaytoAABB(c2Ray A, c2AABB B, c2Raycast* out)
|
||
|
{
|
||
|
c2v p0 = A.p;
|
||
|
c2v p1 = c2Impact(A, A.t);
|
||
|
c2AABB a_box;
|
||
|
a_box.min = c2Minv(p0, p1);
|
||
|
a_box.max = c2Maxv(p0, p1);
|
||
|
|
||
|
// Test B's axes.
|
||
|
if (!c2AABBtoAABB(a_box, B)) return 0;
|
||
|
|
||
|
// Test the ray's axes (along the segment's normal).
|
||
|
c2v ab = c2Sub(p1, p0);
|
||
|
c2v n = c2Skew(ab);
|
||
|
c2v abs_n = c2Absv(n);
|
||
|
c2v half_extents = c2Mulvs(c2Sub(B.max, B.min), 0.5f);
|
||
|
c2v center_of_b_box = c2Mulvs(c2Add(B.min, B.max), 0.5f);
|
||
|
float d = c2Abs(c2Dot(n, c2Sub(p0, center_of_b_box))) - c2Dot(abs_n, half_extents);
|
||
|
if (d > 0) return 0;
|
||
|
|
||
|
// Calculate intermediate values up-front.
|
||
|
// This should play well with superscalar architecture.
|
||
|
float da0 = c2SignedDistPointToPlane_OneDimensional(p0.x, -1.0f, B.min.x);
|
||
|
float db0 = c2SignedDistPointToPlane_OneDimensional(p1.x, -1.0f, B.min.x);
|
||
|
float da1 = c2SignedDistPointToPlane_OneDimensional(p0.x, 1.0f, B.max.x);
|
||
|
float db1 = c2SignedDistPointToPlane_OneDimensional(p1.x, 1.0f, B.max.x);
|
||
|
float da2 = c2SignedDistPointToPlane_OneDimensional(p0.y, -1.0f, B.min.y);
|
||
|
float db2 = c2SignedDistPointToPlane_OneDimensional(p1.y, -1.0f, B.min.y);
|
||
|
float da3 = c2SignedDistPointToPlane_OneDimensional(p0.y, 1.0f, B.max.y);
|
||
|
float db3 = c2SignedDistPointToPlane_OneDimensional(p1.y, 1.0f, B.max.y);
|
||
|
float t0 = c2RayToPlane_OneDimensional(da0, db0);
|
||
|
float t1 = c2RayToPlane_OneDimensional(da1, db1);
|
||
|
float t2 = c2RayToPlane_OneDimensional(da2, db2);
|
||
|
float t3 = c2RayToPlane_OneDimensional(da3, db3);
|
||
|
|
||
|
// Calculate hit predicate, no branching.
|
||
|
int hit0 = t0 < 1.0f;
|
||
|
int hit1 = t1 < 1.0f;
|
||
|
int hit2 = t2 < 1.0f;
|
||
|
int hit3 = t3 < 1.0f;
|
||
|
int hit = hit0 | hit1 | hit2 | hit3;
|
||
|
|
||
|
if (hit)
|
||
|
{
|
||
|
// Remap t's within 0-1 range, where >= 1 is treated as 0.
|
||
|
t0 = (float)hit0 * t0;
|
||
|
t1 = (float)hit1 * t1;
|
||
|
t2 = (float)hit2 * t2;
|
||
|
t3 = (float)hit3 * t3;
|
||
|
|
||
|
// Sort output by finding largest t to deduce the normal.
|
||
|
if (t0 >= t1 && t0 >= t2 && t0 >= t3)
|
||
|
{
|
||
|
out->t = t0 * A.t;
|
||
|
out->n = c2V(-1, 0);
|
||
|
}
|
||
|
|
||
|
else if (t1 >= t0 && t1 >= t2 && t1 >= t3)
|
||
|
{
|
||
|
out->t = t1 * A.t;
|
||
|
out->n = c2V(1, 0);
|
||
|
}
|
||
|
|
||
|
else if (t2 >= t0 && t2 >= t1 && t2 >= t3)
|
||
|
{
|
||
|
out->t = t2 * A.t;
|
||
|
out->n = c2V(0, -1);
|
||
|
}
|
||
|
|
||
|
else
|
||
|
{
|
||
|
out->t = t3 * A.t;
|
||
|
out->n = c2V(0, 1);
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
} else return 0; // This can still numerically happen.
|
||
|
}
|
||
|
|
||
|
int c2RaytoCapsule(c2Ray A, c2Capsule B, c2Raycast* out)
|
||
|
{
|
||
|
c2m M;
|
||
|
M.y = c2Norm(c2Sub(B.b, B.a));
|
||
|
M.x = c2CCW90(M.y);
|
||
|
|
||
|
// rotate capsule to origin, along Y axis
|
||
|
// rotate the ray same way
|
||
|
c2v cap_n = c2Sub(B.b, B.a);
|
||
|
c2v yBb = c2MulmvT(M, cap_n);
|
||
|
c2v yAp = c2MulmvT(M, c2Sub(A.p, B.a));
|
||
|
c2v yAd = c2MulmvT(M, A.d);
|
||
|
c2v yAe = c2Add(yAp, c2Mulvs(yAd, A.t));
|
||
|
|
||
|
c2AABB capsule_bb;
|
||
|
capsule_bb.min = c2V(-B.r, 0);
|
||
|
capsule_bb.max = c2V(B.r, yBb.y);
|
||
|
|
||
|
out->n = c2Norm(cap_n);
|
||
|
out->t = 0;
|
||
|
|
||
|
// check and see if ray starts within the capsule
|
||
|
if (c2AABBtoPoint(capsule_bb, yAp)) {
|
||
|
return 1;
|
||
|
} else {
|
||
|
c2Circle capsule_a;
|
||
|
c2Circle capsule_b;
|
||
|
capsule_a.p = B.a;
|
||
|
capsule_a.r = B.r;
|
||
|
capsule_b.p = B.b;
|
||
|
capsule_b.r = B.r;
|
||
|
|
||
|
if (c2CircleToPoint(capsule_a, A.p)) {
|
||
|
return 1;
|
||
|
} else if (c2CircleToPoint(capsule_b, A.p)) {
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (yAe.x * yAp.x < 0 || c2Min(c2Abs(yAe.x), c2Abs(yAp.x)) < B.r)
|
||
|
{
|
||
|
c2Circle Ca, Cb;
|
||
|
Ca.p = B.a;
|
||
|
Ca.r = B.r;
|
||
|
Cb.p = B.b;
|
||
|
Cb.r = B.r;
|
||
|
|
||
|
// ray starts inside capsule prism -- must hit one of the semi-circles
|
||
|
if (c2Abs(yAp.x) < B.r) {
|
||
|
if (yAp.y < 0) return c2RaytoCircle(A, Ca, out);
|
||
|
else return c2RaytoCircle(A, Cb, out);
|
||
|
}
|
||
|
|
||
|
// hit the capsule prism
|
||
|
else
|
||
|
{
|
||
|
float c = yAp.x > 0 ? B.r : -B.r;
|
||
|
float d = (yAe.x - yAp.x);
|
||
|
float t = (c - yAp.x) / d;
|
||
|
float y = yAp.y + (yAe.y - yAp.y) * t;
|
||
|
if (y <= 0) return c2RaytoCircle(A, Ca, out);
|
||
|
if (y >= yBb.y) return c2RaytoCircle(A, Cb, out);
|
||
|
else {
|
||
|
out->n = c > 0 ? M.x : c2Skew(M.y);
|
||
|
out->t = t * A.t;
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int c2RaytoPoly(c2Ray A, const c2Poly* B, const c2x* bx_ptr, c2Raycast* out)
|
||
|
{
|
||
|
c2x bx = bx_ptr ? *bx_ptr : c2xIdentity();
|
||
|
c2v p = c2MulxvT(bx, A.p);
|
||
|
c2v d = c2MulrvT(bx.r, A.d);
|
||
|
float lo = 0;
|
||
|
float hi = A.t;
|
||
|
int index = ~0;
|
||
|
|
||
|
// test ray to each plane, tracking lo/hi times of intersection
|
||
|
for (int i = 0; i < B->count; ++i)
|
||
|
{
|
||
|
float num = c2Dot(B->norms[i], c2Sub(B->verts[i], p));
|
||
|
float den = c2Dot(B->norms[i], d);
|
||
|
if (den == 0 && num < 0) return 0;
|
||
|
else
|
||
|
{
|
||
|
if (den < 0 && num < lo * den)
|
||
|
{
|
||
|
lo = num / den;
|
||
|
index = i;
|
||
|
}
|
||
|
else if (den > 0 && num < hi * den) hi = num / den;
|
||
|
}
|
||
|
if (hi < lo) return 0;
|
||
|
}
|
||
|
|
||
|
if (index != ~0)
|
||
|
{
|
||
|
out->t = lo;
|
||
|
out->n = c2Mulrv(bx.r, B->norms[index]);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void c2CircletoCircleManifold(c2Circle A, c2Circle B, c2Manifold* m)
|
||
|
{
|
||
|
m->count = 0;
|
||
|
c2v d = c2Sub(B.p, A.p);
|
||
|
float d2 = c2Dot(d, d);
|
||
|
float r = A.r + B.r;
|
||
|
if (d2 < r * r)
|
||
|
{
|
||
|
float l = c2Sqrt(d2);
|
||
|
c2v n = l != 0 ? c2Mulvs(d, 1.0f / l) : c2V(0, 1.0f);
|
||
|
m->count = 1;
|
||
|
m->depths[0] = r - l;
|
||
|
m->contact_points[0] = c2Sub(B.p, c2Mulvs(n, B.r));
|
||
|
m->n = n;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void c2CircletoAABBManifold(c2Circle A, c2AABB B, c2Manifold* m)
|
||
|
{
|
||
|
m->count = 0;
|
||
|
c2v L = c2Clampv(A.p, B.min, B.max);
|
||
|
c2v ab = c2Sub(L, A.p);
|
||
|
float d2 = c2Dot(ab, ab);
|
||
|
float r2 = A.r * A.r;
|
||
|
if (d2 < r2)
|
||
|
{
|
||
|
// shallow (center of circle not inside of AABB)
|
||
|
if (d2 != 0)
|
||
|
{
|
||
|
float d = c2Sqrt(d2);
|
||
|
c2v n = c2Norm(ab);
|
||
|
m->count = 1;
|
||
|
m->depths[0] = A.r - d;
|
||
|
m->contact_points[0] = c2Add(A.p, c2Mulvs(n, d));
|
||
|
m->n = n;
|
||
|
}
|
||
|
|
||
|
// deep (center of circle inside of AABB)
|
||
|
// clamp circle's center to edge of AABB, then form the manifold
|
||
|
else
|
||
|
{
|
||
|
c2v mid = c2Mulvs(c2Add(B.min, B.max), 0.5f);
|
||
|
c2v e = c2Mulvs(c2Sub(B.max, B.min), 0.5f);
|
||
|
c2v d = c2Sub(A.p, mid);
|
||
|
c2v abs_d = c2Absv(d);
|
||
|
|
||
|
float x_overlap = e.x - abs_d.x;
|
||
|
float y_overlap = e.y - abs_d.y;
|
||
|
|
||
|
float depth;
|
||
|
c2v n;
|
||
|
|
||
|
if (x_overlap < y_overlap)
|
||
|
{
|
||
|
depth = x_overlap;
|
||
|
n = c2V(1.0f, 0);
|
||
|
n = c2Mulvs(n, d.x < 0 ? 1.0f : -1.0f);
|
||
|
}
|
||
|
|
||
|
else
|
||
|
{
|
||
|
depth = y_overlap;
|
||
|
n = c2V(0, 1.0f);
|
||
|
n = c2Mulvs(n, d.y < 0 ? 1.0f : -1.0f);
|
||
|
}
|
||
|
|
||
|
m->count = 1;
|
||
|
m->depths[0] = A.r + depth;
|
||
|
m->contact_points[0] = c2Sub(A.p, c2Mulvs(n, depth));
|
||
|
m->n = n;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void c2CircletoCapsuleManifold(c2Circle A, c2Capsule B, c2Manifold* m)
|
||
|
{
|
||
|
m->count = 0;
|
||
|
c2v a, b;
|
||
|
float r = A.r + B.r;
|
||
|
float d = c2GJK(&A, C2_TYPE_CIRCLE, 0, &B, C2_TYPE_CAPSULE, 0, &a, &b, 0, 0, 0);
|
||
|
if (d < r)
|
||
|
{
|
||
|
c2v n;
|
||
|
if (d == 0) n = c2Norm(c2Skew(c2Sub(B.b, B.a)));
|
||
|
else n = c2Norm(c2Sub(b, a));
|
||
|
|
||
|
m->count = 1;
|
||
|
m->depths[0] = r - d;
|
||
|
m->contact_points[0] = c2Sub(b, c2Mulvs(n, B.r));
|
||
|
m->n = n;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void c2AABBtoAABBManifold(c2AABB A, c2AABB B, c2Manifold* m)
|
||
|
{
|
||
|
m->count = 0;
|
||
|
c2v mid_a = c2Mulvs(c2Add(A.min, A.max), 0.5f);
|
||
|
c2v mid_b = c2Mulvs(c2Add(B.min, B.max), 0.5f);
|
||
|
c2v eA = c2Absv(c2Mulvs(c2Sub(A.max, A.min), 0.5f));
|
||
|
c2v eB = c2Absv(c2Mulvs(c2Sub(B.max, B.min), 0.5f));
|
||
|
c2v d = c2Sub(mid_b, mid_a);
|
||
|
|
||
|
// calc overlap on x and y axes
|
||
|
float dx = eA.x + eB.x - c2Abs(d.x);
|
||
|
if (dx < 0) return;
|
||
|
float dy = eA.y + eB.y - c2Abs(d.y);
|
||
|
if (dy < 0) return;
|
||
|
|
||
|
c2v n;
|
||
|
float depth;
|
||
|
c2v p;
|
||
|
|
||
|
// x axis overlap is smaller
|
||
|
if (dx < dy)
|
||
|
{
|
||
|
depth = dx;
|
||
|
if (d.x < 0)
|
||
|
{
|
||
|
n = c2V(-1.0f, 0);
|
||
|
p = c2Sub(mid_a, c2V(eA.x, 0));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
n = c2V(1.0f, 0);
|
||
|
p = c2Add(mid_a, c2V(eA.x, 0));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// y axis overlap is smaller
|
||
|
else
|
||
|
{
|
||
|
depth = dy;
|
||
|
if (d.y < 0)
|
||
|
{
|
||
|
n = c2V(0, -1.0f);
|
||
|
p = c2Sub(mid_a, c2V(0, eA.y));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
n = c2V(0, 1.0f);
|
||
|
p = c2Add(mid_a, c2V(0, eA.y));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
m->count = 1;
|
||
|
m->contact_points[0] = p;
|
||
|
m->depths[0] = depth;
|
||
|
m->n = n;
|
||
|
}
|
||
|
|
||
|
void c2AABBtoCapsuleManifold(c2AABB A, c2Capsule B, c2Manifold* m)
|
||
|
{
|
||
|
m->count = 0;
|
||
|
c2Poly p;
|
||
|
c2BBVerts(p.verts, &A);
|
||
|
p.count = 4;
|
||
|
c2Norms(p.verts, p.norms, 4);
|
||
|
c2CapsuletoPolyManifold(B, &p, 0, m);
|
||
|
m->n = c2Neg(m->n);
|
||
|
}
|
||
|
|
||
|
void c2CapsuletoCapsuleManifold(c2Capsule A, c2Capsule B, c2Manifold* m)
|
||
|
{
|
||
|
m->count = 0;
|
||
|
c2v a, b;
|
||
|
float r = A.r + B.r;
|
||
|
float d = c2GJK(&A, C2_TYPE_CAPSULE, 0, &B, C2_TYPE_CAPSULE, 0, &a, &b, 0, 0, 0);
|
||
|
if (d < r)
|
||
|
{
|
||
|
c2v n;
|
||
|
if (d == 0) n = c2Norm(c2Skew(c2Sub(A.b, A.a)));
|
||
|
else n = c2Norm(c2Sub(b, a));
|
||
|
|
||
|
m->count = 1;
|
||
|
m->depths[0] = r - d;
|
||
|
m->contact_points[0] = c2Sub(b, c2Mulvs(n, B.r));
|
||
|
m->n = n;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static C2_INLINE c2h c2PlaneAt(const c2Poly* p, const int i)
|
||
|
{
|
||
|
c2h h;
|
||
|
h.n = p->norms[i];
|
||
|
h.d = c2Dot(p->norms[i], p->verts[i]);
|
||
|
return h;
|
||
|
}
|
||
|
|
||
|
void c2CircletoPolyManifold(c2Circle A, const c2Poly* B, const c2x* bx_tr, c2Manifold* m)
|
||
|
{
|
||
|
m->count = 0;
|
||
|
c2v a, b;
|
||
|
float d = c2GJK(&A, C2_TYPE_CIRCLE, 0, B, C2_TYPE_POLY, bx_tr, &a, &b, 0, 0, 0);
|
||
|
|
||
|
// shallow, the circle center did not hit the polygon
|
||
|
// just use a and b from GJK to define the collision
|
||
|
if (d != 0)
|
||
|
{
|
||
|
c2v n = c2Sub(b, a);
|
||
|
float l = c2Dot(n, n);
|
||
|
if (l < A.r * A.r)
|
||
|
{
|
||
|
l = c2Sqrt(l);
|
||
|
m->count = 1;
|
||
|
m->contact_points[0] = b;
|
||
|
m->depths[0] = A.r - l;
|
||
|
m->n = c2Mulvs(n, 1.0f / l);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Circle center is inside the polygon
|
||
|
// find the face closest to circle center to form manifold
|
||
|
else
|
||
|
{
|
||
|
c2x bx = bx_tr ? *bx_tr : c2xIdentity();
|
||
|
float sep = -FLT_MAX;
|
||
|
int index = ~0;
|
||
|
c2v local = c2MulxvT(bx, A.p);
|
||
|
|
||
|
for (int i = 0; i < B->count; ++i)
|
||
|
{
|
||
|
c2h h = c2PlaneAt(B, i);
|
||
|
d = c2Dist(h, local);
|
||
|
if (d > A.r) return;
|
||
|
if (d > sep)
|
||
|
{
|
||
|
sep = d;
|
||
|
index = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
c2h h = c2PlaneAt(B, index);
|
||
|
c2v p = c2Project(h, local);
|
||
|
m->count = 1;
|
||
|
m->contact_points[0] = c2Mulxv(bx, p);
|
||
|
m->depths[0] = A.r - sep;
|
||
|
m->n = c2Neg(c2Mulrv(bx.r, B->norms[index]));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Forms a c2Poly and uses c2PolytoPolyManifold
|
||
|
void c2AABBtoPolyManifold(c2AABB A, const c2Poly* B, const c2x* bx, c2Manifold* m)
|
||
|
{
|
||
|
m->count = 0;
|
||
|
c2Poly p;
|
||
|
c2BBVerts(p.verts, &A);
|
||
|
p.count = 4;
|
||
|
c2Norms(p.verts, p.norms, 4);
|
||
|
c2PolytoPolyManifold(&p, 0, B, bx, m);
|
||
|
}
|
||
|
|
||
|
// clip a segment to a plane
|
||
|
static int c2Clip(c2v* seg, c2h h)
|
||
|
{
|
||
|
c2v out[2];
|
||
|
int sp = 0;
|
||
|
float d0, d1;
|
||
|
if ((d0 = c2Dist(h, seg[0])) < 0) out[sp++] = seg[0];
|
||
|
if ((d1 = c2Dist(h, seg[1])) < 0) out[sp++] = seg[1];
|
||
|
if (d0 == 0 && d1 == 0) {
|
||
|
out[sp++] = seg[0];
|
||
|
out[sp++] = seg[1];
|
||
|
} else if (d0 * d1 <= 0) out[sp++] = c2Intersect(seg[0], seg[1], d0, d1);
|
||
|
seg[0] = out[0]; seg[1] = out[1];
|
||
|
return sp;
|
||
|
}
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
#pragma warning(push)
|
||
|
#pragma warning(disable:4204) // nonstandard extension used: non-constant aggregate initializer
|
||
|
#endif
|
||
|
|
||
|
static int c2SidePlanes(c2v* seg, c2v ra, c2v rb, c2h* h)
|
||
|
{
|
||
|
c2v in = c2Norm(c2Sub(rb, ra));
|
||
|
c2h left = { c2Neg(in), c2Dot(c2Neg(in), ra) };
|
||
|
c2h right = { in, c2Dot(in, rb) };
|
||
|
if (c2Clip(seg, left) < 2) return 0;
|
||
|
if (c2Clip(seg, right) < 2) return 0;
|
||
|
if (h) {
|
||
|
h->n = c2CCW90(in);
|
||
|
h->d = c2Dot(c2CCW90(in), ra);
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
// clip a segment to the "side planes" of another segment.
|
||
|
// side planes are planes orthogonal to a segment and attached to the
|
||
|
// endpoints of the segment
|
||
|
static int c2SidePlanesFromPoly(c2v* seg, c2x x, const c2Poly* p, int e, c2h* h)
|
||
|
{
|
||
|
c2v ra = c2Mulxv(x, p->verts[e]);
|
||
|
c2v rb = c2Mulxv(x, p->verts[e + 1 == p->count ? 0 : e + 1]);
|
||
|
return c2SidePlanes(seg, ra, rb, h);
|
||
|
}
|
||
|
|
||
|
static void c2KeepDeep(c2v* seg, c2h h, c2Manifold* m)
|
||
|
{
|
||
|
int cp = 0;
|
||
|
for (int i = 0; i < 2; ++i)
|
||
|
{
|
||
|
c2v p = seg[i];
|
||
|
float d = c2Dist(h, p);
|
||
|
if (d <= 0)
|
||
|
{
|
||
|
m->contact_points[cp] = p;
|
||
|
m->depths[cp] = -d;
|
||
|
++cp;
|
||
|
}
|
||
|
}
|
||
|
m->count = cp;
|
||
|
m->n = h.n;
|
||
|
}
|
||
|
|
||
|
static C2_INLINE c2v c2CapsuleSupport(c2Capsule A, c2v dir)
|
||
|
{
|
||
|
float da = c2Dot(A.a, dir);
|
||
|
float db = c2Dot(A.b, dir);
|
||
|
if (da > db) return c2Add(A.a, c2Mulvs(dir, A.r));
|
||
|
else return c2Add(A.b, c2Mulvs(dir, A.r));
|
||
|
}
|
||
|
|
||
|
static void c2AntinormalFace(c2Capsule cap, const c2Poly* p, c2x x, int* face_out, c2v* n_out)
|
||
|
{
|
||
|
float sep = -FLT_MAX;
|
||
|
int index = ~0;
|
||
|
c2v n = c2V(0, 0);
|
||
|
for (int i = 0; i < p->count; ++i)
|
||
|
{
|
||
|
c2h h = c2Mulxh(x, c2PlaneAt(p, i));
|
||
|
c2v n0 = c2Neg(h.n);
|
||
|
c2v s = c2CapsuleSupport(cap, n0);
|
||
|
float d = c2Dist(h, s);
|
||
|
if (d > sep)
|
||
|
{
|
||
|
sep = d;
|
||
|
index = i;
|
||
|
n = n0;
|
||
|
}
|
||
|
}
|
||
|
*face_out = index;
|
||
|
*n_out = n;
|
||
|
}
|
||
|
|
||
|
static void c2Incident(c2v* incident, const c2Poly* ip, c2x ix, c2v rn_in_incident_space)
|
||
|
{
|
||
|
int index = ~0;
|
||
|
float min_dot = FLT_MAX;
|
||
|
for (int i = 0; i < ip->count; ++i)
|
||
|
{
|
||
|
float dot = c2Dot(rn_in_incident_space, ip->norms[i]);
|
||
|
if (dot < min_dot)
|
||
|
{
|
||
|
min_dot = dot;
|
||
|
index = i;
|
||
|
}
|
||
|
}
|
||
|
incident[0] = c2Mulxv(ix, ip->verts[index]);
|
||
|
incident[1] = c2Mulxv(ix, ip->verts[index + 1 == ip->count ? 0 : index + 1]);
|
||
|
}
|
||
|
|
||
|
void c2CapsuletoPolyManifold(c2Capsule A, const c2Poly* B, const c2x* bx_ptr, c2Manifold* m)
|
||
|
{
|
||
|
m->count = 0;
|
||
|
c2v a, b;
|
||
|
float d = c2GJK(&A, C2_TYPE_CAPSULE, 0, B, C2_TYPE_POLY, bx_ptr, &a, &b, 0, 0, 0);
|
||
|
|
||
|
// deep, treat as segment to poly collision
|
||
|
if (d < 1.0e-6f)
|
||
|
{
|
||
|
c2x bx = bx_ptr ? *bx_ptr : c2xIdentity();
|
||
|
c2Capsule A_in_B;
|
||
|
A_in_B.a = c2MulxvT(bx, A.a);
|
||
|
A_in_B.b = c2MulxvT(bx, A.b);
|
||
|
c2v ab = c2Norm(c2Sub(A_in_B.a, A_in_B.b));
|
||
|
|
||
|
// test capsule axes
|
||
|
c2h ab_h0;
|
||
|
ab_h0.n = c2CCW90(ab);
|
||
|
ab_h0.d = c2Dot(A_in_B.a, ab_h0.n);
|
||
|
int v0 = c2Support(B->verts, B->count, c2Neg(ab_h0.n));
|
||
|
float s0 = c2Dist(ab_h0, B->verts[v0]);
|
||
|
|
||
|
c2h ab_h1;
|
||
|
ab_h1.n = c2Skew(ab);
|
||
|
ab_h1.d = c2Dot(A_in_B.a, ab_h1.n);
|
||
|
int v1 = c2Support(B->verts, B->count, c2Neg(ab_h1.n));
|
||
|
float s1 = c2Dist(ab_h1, B->verts[v1]);
|
||
|
|
||
|
// test poly axes
|
||
|
int index = ~0;
|
||
|
float sep = -FLT_MAX;
|
||
|
int code = 0;
|
||
|
for (int i = 0; i < B->count; ++i)
|
||
|
{
|
||
|
c2h h = c2PlaneAt(B, i);
|
||
|
float da = c2Dot(A_in_B.a, c2Neg(h.n));
|
||
|
float db = c2Dot(A_in_B.b, c2Neg(h.n));
|
||
|
float d;
|
||
|
if (da > db) d = c2Dist(h, A_in_B.a);
|
||
|
else d = c2Dist(h, A_in_B.b);
|
||
|
if (d > sep)
|
||
|
{
|
||
|
sep = d;
|
||
|
index = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// track axis of minimum separation
|
||
|
if (s0 > sep) {
|
||
|
sep = s0;
|
||
|
index = v0;
|
||
|
code = 1;
|
||
|
}
|
||
|
|
||
|
if (s1 > sep) {
|
||
|
sep = s1;
|
||
|
index = v1;
|
||
|
code = 2;
|
||
|
}
|
||
|
|
||
|
switch (code)
|
||
|
{
|
||
|
case 0: // poly face
|
||
|
{
|
||
|
c2v seg[2] = { A.a, A.b };
|
||
|
c2h h;
|
||
|
if (!c2SidePlanesFromPoly(seg, bx, B, index, &h)) return;
|
||
|
c2KeepDeep(seg, h, m);
|
||
|
m->n = c2Neg(m->n);
|
||
|
} break;
|
||
|
|
||
|
case 1: // side 0 of capsule segment
|
||
|
{
|
||
|
c2v incident[2];
|
||
|
c2Incident(incident, B, bx, ab_h0.n);
|
||
|
c2h h;
|
||
|
if (!c2SidePlanes(incident, A_in_B.b, A_in_B.a, &h)) return;
|
||
|
c2KeepDeep(incident, h, m);
|
||
|
} break;
|
||
|
|
||
|
case 2: // side 1 of capsule segment
|
||
|
{
|
||
|
c2v incident[2];
|
||
|
c2Incident(incident, B, bx, ab_h1.n);
|
||
|
c2h h;
|
||
|
if (!c2SidePlanes(incident, A_in_B.a, A_in_B.b, &h)) return;
|
||
|
c2KeepDeep(incident, h, m);
|
||
|
} break;
|
||
|
|
||
|
default:
|
||
|
// should never happen.
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < m->count; ++i) m->depths[i] += A.r;
|
||
|
}
|
||
|
|
||
|
// shallow, use GJK results a and b to define manifold
|
||
|
else if (d < A.r)
|
||
|
{
|
||
|
m->count = 1;
|
||
|
m->n = c2Norm(c2Sub(b, a));
|
||
|
m->contact_points[0] = c2Add(a, c2Mulvs(m->n, A.r));
|
||
|
m->depths[0] = A.r - d;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
#pragma warning(pop)
|
||
|
#endif
|
||
|
|
||
|
static float c2CheckFaces(const c2Poly* A, c2x ax, const c2Poly* B, c2x bx, int* face_index)
|
||
|
{
|
||
|
c2x b_in_a = c2MulxxT(ax, bx);
|
||
|
c2x a_in_b = c2MulxxT(bx, ax);
|
||
|
float sep = -FLT_MAX;
|
||
|
int index = ~0;
|
||
|
|
||
|
for (int i = 0; i < A->count; ++i)
|
||
|
{
|
||
|
c2h h = c2PlaneAt(A, i);
|
||
|
int idx = c2Support(B->verts, B->count, c2Mulrv(a_in_b.r, c2Neg(h.n)));
|
||
|
c2v p = c2Mulxv(b_in_a, B->verts[idx]);
|
||
|
float d = c2Dist(h, p);
|
||
|
if (d > sep)
|
||
|
{
|
||
|
sep = d;
|
||
|
index = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
*face_index = index;
|
||
|
return sep;
|
||
|
}
|
||
|
|
||
|
// Please see Dirk Gregorius's 2013 GDC lecture on the Separating Axis Theorem
|
||
|
// for a full-algorithm overview. The short description is:
|
||
|
// Test A against faces of B, test B against faces of A
|
||
|
// Define the reference and incident shapes (denoted by r and i respectively)
|
||
|
// Define the reference face as the axis of minimum penetration
|
||
|
// Find the incident face, which is most anti-normal face
|
||
|
// Clip incident face to reference face side planes
|
||
|
// Keep all points behind the reference face
|
||
|
void c2PolytoPolyManifold(const c2Poly* A, const c2x* ax_ptr, const c2Poly* B, const c2x* bx_ptr, c2Manifold* m)
|
||
|
{
|
||
|
m->count = 0;
|
||
|
c2x ax = ax_ptr ? *ax_ptr : c2xIdentity();
|
||
|
c2x bx = bx_ptr ? *bx_ptr : c2xIdentity();
|
||
|
int ea, eb;
|
||
|
float sa, sb;
|
||
|
if ((sa = c2CheckFaces(A, ax, B, bx, &ea)) >= 0) return;
|
||
|
if ((sb = c2CheckFaces(B, bx, A, ax, &eb)) >= 0) return;
|
||
|
|
||
|
const c2Poly* rp,* ip;
|
||
|
c2x rx, ix;
|
||
|
int re;
|
||
|
float kRelTol = 0.95f, kAbsTol = 0.01f;
|
||
|
int flip;
|
||
|
if (sa * kRelTol > sb + kAbsTol)
|
||
|
{
|
||
|
rp = A; rx = ax;
|
||
|
ip = B; ix = bx;
|
||
|
re = ea;
|
||
|
flip = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
rp = B; rx = bx;
|
||
|
ip = A; ix = ax;
|
||
|
re = eb;
|
||
|
flip = 1;
|
||
|
}
|
||
|
|
||
|
c2v incident[2];
|
||
|
c2Incident(incident, ip, ix, c2MulrvT(ix.r, c2Mulrv(rx.r, rp->norms[re])));
|
||
|
c2h rh;
|
||
|
if (!c2SidePlanesFromPoly(incident, rx, rp, re, &rh)) return;
|
||
|
c2KeepDeep(incident, rh, m);
|
||
|
if (flip) m->n = c2Neg(m->n);
|
||
|
}
|
||
|
|
||
|
#endif // CUTE_C2_IMPLEMENTATION_ONCE
|
||
|
#endif // CUTE_C2_IMPLEMENTATION
|
||
|
|
||
|
/*
|
||
|
------------------------------------------------------------------------------
|
||
|
This software is available under 2 licenses - you may choose the one you like.
|
||
|
------------------------------------------------------------------------------
|
||
|
ALTERNATIVE A - zlib license
|
||
|
Copyright (c) 2017 Randy Gaul http://www.randygaul.net
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from
|
||
|
the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it
|
||
|
freely, subject to the following restrictions:
|
||
|
1. The origin of this software must not be misrepresented; you must not
|
||
|
claim that you wrote the original software. If you use this software
|
||
|
in a product, an acknowledgment in the product documentation would be
|
||
|
appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not
|
||
|
be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
------------------------------------------------------------------------------
|
||
|
ALTERNATIVE B - Public Domain (www.unlicense.org)
|
||
|
This is free and unencumbered software released into the public domain.
|
||
|
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
|
||
|
software, either in source code form or as a compiled binary, for any purpose,
|
||
|
commercial or non-commercial, and by any means.
|
||
|
In jurisdictions that recognize copyright laws, the author or authors of this
|
||
|
software dedicate any and all copyright interest in the software to the public
|
||
|
domain. We make this dedication for the benefit of the public at large and to
|
||
|
the detriment of our heirs and successors. We intend this dedication to be an
|
||
|
overt act of relinquishment in perpetuity of all present and future rights to
|
||
|
this software under copyright law.
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||
|
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
------------------------------------------------------------------------------
|
||
|
*/
|