diff --git a/physics.jai b/physics.jai index f5ed0e2..8cd89e4 100644 --- a/physics.jai +++ b/physics.jai @@ -9,6 +9,8 @@ TIMESTEP: float = 1.0 / 60.0; window_width : s32 = 1280; window_height : s32 = 720; +dbgprint :: print; // so can be + xy :: (x: int, y: int) -> Vector2 { return xy(cast(float)x, cast(float)y); } @@ -105,6 +107,12 @@ apply_force_at_point :: (r: *Rect, force: Vector2, point_world_space: Vector2) { offset_from_center_of_mass := point_world_space - r.pos; r.torque += offset_from_center_of_mass.x * force.y - offset_from_center_of_mass.y * force.x; } +apply_impulse_at_point :: (using r: *Rect, impulse: Vector2, point_world_space: Vector2) { + //apply_force_at_point(r, impulse / TIMESTEP, point_world_space); + //return; + vel += impulse / r.mass; + angle_vel += length(impulse) * (cross(point_world_space - pos, normalize(impulse))/moment_of_inertia(r)); +} // everything needed to resolve the collision Manifold :: struct { a, b: *Rect; @@ -135,8 +143,8 @@ handle_collision :: (m: Manifold, dt: float) { if a.static || b.static impulse_strength *= 2.0; impulse := m.normal * impulse_strength; - apply_force_at_point(b, impulse / dt, m.contact_points[it]); - apply_force_at_point(a, -impulse / dt, m.contact_points[it]); + apply_impulse_at_point(b, impulse, m.contact_points[it]); + apply_impulse_at_point(a, -impulse, m.contact_points[it]); } /*k_scalar :: (a: Rectangle, b: Rectangle, r1: Vector2, r2: Vector2, n: Vector2) { k_scalar_rect :: (a: Rectangle, r: Vector2, n: Vector2) @@ -586,6 +594,8 @@ main :: () { // gravity it.force.y += -9.81; + //if !it.static dbgprint("%\n", it.angle_vel); + if !it.static { it.vel += (it.force/it.mass) * TIMESTEP;