#pragma once #define MAX_PLAYERS 4 #define BOX_SIZE 0.5f #define MAX_GRIDS 32 #define MAX_BOXES_PER_GRID 32 #define BOX_MASS 1.0f // @Robust remove this include somehow, needed for sqrt and cos #include // including headers from headers bad #ifndef SOKOL_GP_INCLUDED // @Robust use double precision for all vectors, when passed back to sokol // somehow automatically or easily cast to floats typedef struct sgp_vec2 { float x, y; } sgp_vec2; typedef sgp_vec2 sgp_point; #endif #ifndef CHIPMUNK_H typedef void cpSpace; typedef void cpBody; typedef void cpShape; #endif #include #ifndef _STDBOOL #define bool _Bool #define false 0 #define true 1 #endif typedef sgp_vec2 V2; typedef sgp_point P2; #define Log(...) \ fprintf(stdout, "%s:%d | ", __FILE__, __LINE__); \ fprintf(stdout, __VA_ARGS__) // gotta update the serialization functions when this changes struct GameState { cpSpace *space; struct Player { int currently_inhabiting_index; // is equal to -1 when not inhabiting a grid bool connected; V2 pos; V2 vel; // input V2 movement; bool inhabit; V2 build; // @Robust this is messy, clean up? bool dobuild; int grid_index; } players[MAX_PLAYERS]; // if body or shape is null, then that grid/box has been freed // important that this memory does not move around, each box shape in it has a pointer to its grid struct, stored in the box's shapes user_data struct Grid { cpBody *body; struct Box { cpShape *shape; float damage; } boxes[MAX_BOXES_PER_GRID]; // @Robust this needs to be dynamically allocated, huge disparity in how many blocks a body can have... } grids[MAX_GRIDS]; }; struct ServerToClient { struct GameState *cur_gs; int your_player; }; struct ClientToServer { V2 movement; bool inhabit; V2 build; bool dobuild; int grid_index; }; // server void server(void *data); // data parameter required from thread api... // gamestate void initialize(struct GameState *gs); // must do this to place boxes into it and process void destroy(struct GameState *gs); void process(struct GameState *gs, float dt); // does in place struct Grid *closest_to_point_in_radius(struct GameState *gs, V2 point, float radius); void into_bytes(struct ServerToClient *gs, char *out_bytes, int *out_len, int max_len); void from_bytes(struct ServerToClient *gs, char *bytes, int max_len); // player void reset_player(struct Player *p); // grid void grid_new(struct Grid *to_modify, struct GameState *gs, V2 pos); V2 grid_com(struct Grid *grid); V2 grid_pos(struct Grid *grid); V2 grid_vel(struct Grid *grid); V2 grid_snapped_box_pos(struct Grid *grid, V2 world); // returns the snapped pos in world coords float grid_rotation(struct Grid *grid); float grid_angular_velocity(struct Grid *grid); void box_new(struct Box *to_modify, struct GameState *gs, struct Grid *grid, V2 pos); V2 box_pos(struct Box *box); float box_rotation(struct Box *box); // debug draw void dbg_drawall(); void dbg_line(V2 from, V2 to); void dbg_rect(V2 center); // helper #define SKIPNULL(thing) \ if (thing == NULL) \ continue // all the math is static so that it can be defined in each compilation unit its included in #define PI 3.14159f static V2 V2add(V2 a, V2 b) { return (V2){ .x = a.x + b.x, .y = a.y + b.y, }; } static V2 V2scale(V2 a, float f) { return (V2){ .x = a.x * f, .y = a.y * f, }; } static float V2length(V2 v) { return sqrtf(v.x * v.x + v.y * v.y); } static V2 V2normalize(V2 v) { return V2scale(v, 1.0f / V2length(v)); } static float V2dot(V2 a, V2 b) { return a.x * b.x + a.y * b.y; } static float V2projectvalue(V2 vec, V2 onto) { float length_onto = V2length(onto); return V2dot(vec, onto) / (length_onto * length_onto); } static V2 V2project(V2 vec, V2 onto) { return V2scale(onto, V2projectvalue(vec, onto)); } static V2 V2rotate(V2 vec, float theta) { return (V2){ .x = vec.x * cos(theta) - vec.y * sin(theta), .y = vec.x * sin(theta) + vec.y * cos(theta), }; } // also known as atan2 static float V2angle(V2 vec) { return atan2f(vec.y, vec.x); } static V2 V2sub(V2 a, V2 b) { return (V2){ .x = a.x - b.x, .y = a.y - b.y, }; } static float lerp(float a, float b, float f) { return a * (1.0f - f) + (b * f); } static V2 V2lerp(V2 a, V2 b, float factor) { V2 to_return = {0}; to_return.x = lerp(a.x, b.x, factor); to_return.y = lerp(a.y, b.y, factor); return to_return; }