import bpy
import bmesh
import os
import shutil
import struct
from mathutils import * ; from math import *
from bpy_extras . io_utils import ( axis_conversion )
C = bpy . context
D = bpy . data
LEVEL_EXPORT_NAME = " level "
EXPORT_DIRECTORY = " exported "
print ( " \n \n Let ' s get it started " )
if os . path . exists ( bpy . path . abspath ( f " // { EXPORT_DIRECTORY } " ) ) :
shutil . rmtree ( bpy . path . abspath ( f " // { EXPORT_DIRECTORY } " ) )
os . makedirs ( bpy . path . abspath ( f " // { EXPORT_DIRECTORY } " ) )
def write_b8 ( f , boolean : bool ) :
f . write ( bytes ( struct . pack ( " ? " , boolean ) ) )
def write_f32 ( f , number : float ) :
f . write ( bytes ( struct . pack ( " f " , number ) ) )
def write_u64 ( f , number : int ) :
f . write ( bytes ( struct . pack ( " Q " , number ) ) )
def write_i32 ( f , number : int ) :
f . write ( bytes ( struct . pack ( " i " , number ) ) )
def write_u16 ( f , number : int ) : # unsigned short, used in shaders to figure out which bone index is current
f . write ( bytes ( struct . pack ( " H " , number ) ) )
def write_v3 ( f , vector ) :
write_f32 ( f , vector . x )
write_f32 ( f , vector . y )
write_f32 ( f , vector . z )
def write_quat ( f , quat ) :
write_f32 ( f , quat . x )
write_f32 ( f , quat . y )
write_f32 ( f , quat . z )
write_f32 ( f , quat . w )
def write_string ( f , s : str ) :
encoded = s . encode ( " utf8 " )
write_u64 ( f , len ( encoded ) )
f . write ( encoded )
def write_4x4matrix ( f , m ) :
# writes each row, sequentially, row major
for row in range ( 4 ) :
for col in range ( 4 ) :
write_f32 ( f , m [ row ] [ col ] )
def normalize_joint_weights ( weights ) :
total_weights = sum ( weights )
result = [ 0 , 0 , 0 , 0 ]
if total_weights != 0 :
for i , weight in enumerate ( weights ) : result [ i ] = weight / total_weights
return result
# for the level.bin
level_object_data = [ ]
collision_cubes = [ ]
placed_entities = [ ]
saved_meshes = set ( )
mapping = axis_conversion (
from_forward = " Y " ,
from_up = " Z " ,
to_forward = " -Z " ,
to_up = " Y " ,
)
mapping . resize_4x4 ( )
with open ( bpy . path . abspath ( f " // { EXPORT_DIRECTORY } /shorttest.bin " ) , " wb " ) as f :
for i in range ( 4 ) :
write_u16 ( f , i )
saved_images = set ( )
def ensure_tex_saved_and_get_name ( o ) - > str :
""" returns the path to the mesh ' s texture ' s png in the exported directory """
mesh_name = o . to_mesh ( ) . name
img_obj = None
assert len ( o . material_slots ) == 1 , f " Don ' t know which material slot to pick from in mesh { mesh_name } object { o . name } "
mat = o . material_slots [ 0 ]
for node in mat . material . node_tree . nodes :
if node . type == " TEX_IMAGE " :
img_obj = node . image
break
assert img_obj , f " Mesh { mesh_name } in its material doesn ' t have an image object "
image_filename = f " { img_obj . name } .png "
if image_filename in saved_images :
pass
else :
save_to = f " // { EXPORT_DIRECTORY } / { image_filename } "
print ( f " Saving image { image_filename } to { bpy . path . abspath ( ( save_to ) ) } ... " )
if img_obj . packed_file :
img_obj . save ( filepath = bpy . path . abspath ( save_to ) )
else :
assert img_obj . filepath != " " , f " { img_obj . filepath } in mesh { mesh_name } Isn ' t there but should be, as it has no packed image "
shutil . copyfile ( bpy . path . abspath ( img_obj . filepath ) , bpy . path . abspath ( save_to ) )
return image_filename
# meshes can either be Meshes, or Armatures. Armatures contain all mesh data to draw it, and any anims it has
for o in D . objects :
if o . type == " MESH " :
if o . parent and o . parent . type == " ARMATURE " :
mesh_object = o
o = o . parent
object_transform_info = ( mesh_name , mapping @ o . location , o . rotation_euler , o . scale )
if o . users_collection [ 0 ] . name == ' Level ' :
assert False , " Cannot put armatures in the level. The level is for static placed meshes. For dynamic entities, you put them outside of the level collection, their entity kind is encoded, and the game code decides how to draw them "
else :
pass
#placed_entities.append((mesh_object.name,) + object_transform_info)
armature_name = o . data . name
output_filepath = bpy . path . abspath ( f " // { EXPORT_DIRECTORY } / { armature_name } .bin " )
image_filename = ensure_tex_saved_and_get_name ( mesh_object )
print ( f " Exporting armature with image filename { image_filename } to { output_filepath } " )
with open ( output_filepath , " wb " ) as f :
write_b8 ( f , True )
write_string ( f , image_filename )
bones_in_armature = [ ]
for b in o . data . bones :
bones_in_armature . append ( b )
# the inverse model space pos of the bones
write_u64 ( f , len ( bones_in_armature ) )
for b in bones_in_armature :
model_space_pose = mapping @ b . matrix_local
inverse_model_space_pose = ( mapping @ b . matrix_local ) . inverted ( )
parent_index = - 1
if b . parent :
for i in range ( len ( bones_in_armature ) ) :
if bones_in_armature [ i ] == b . parent :
parent_index = i
break
if parent_index == - 1 :
assert False , f " Couldn ' t find parent of bone { b } "
#print(f"Parent of bone {b.name} is index {parent_index} in list {bones_in_armature}")
write_i32 ( f , parent_index )
write_4x4matrix ( f , model_space_pose )
write_4x4matrix ( f , inverse_model_space_pose )
write_f32 ( f , b . length )
# write the pose information
# it's very important that the array of pose bones contains the same amount of bones
# as there are in the edit bones. Because the edit bones are exported, etc etc. Cowabunga!
assert ( len ( o . pose . bones ) == len ( bones_in_armature ) )
armature = o
anims = [ ]
assert armature . animation_data , " Armatures are assumed to have an animation right now "
for track in armature . animation_data . nla_tracks :
for strip in track . strips :
anims . append ( strip . action )
print ( f " Writing { len ( anims ) } animations " )
write_u64 ( f , len ( anims ) )
for animation in anims :
write_string ( f , animation . name )
armature . animation_data . action = animation
startFrame = int ( animation . frame_range . x )
endFrame = int ( animation . frame_range . y )
total_frames = ( endFrame - startFrame ) + 1 # the end frame is inclusive
print ( f " Exporting animation { animation . name } with { total_frames } frames " )
write_u64 ( f , total_frames )
time_per_anim_frame = 1.0 / float ( bpy . context . scene . render . fps )
for frame in range ( startFrame , endFrame + 1 ) :
time_through_this_frame_occurs_at = ( frame - startFrame ) * time_per_anim_frame
bpy . context . scene . frame_set ( frame )
write_f32 ( f , time_through_this_frame_occurs_at )
for pose_bone_i in range ( len ( o . pose . bones ) ) :
pose_bone = o . pose . bones [ pose_bone_i ]
# in the engine, it's assumed that the poses are in the same order as the bones
# they're referring to. This checks that that is the case.
assert ( pose_bone . bone == bones_in_armature [ pose_bone_i ] )
parent_space_pose = None
if pose_bone . parent :
parent_space_pose = pose_bone . parent . matrix . inverted ( ) @ pose_bone . matrix
else :
parent_space_pose = mapping @ pose_bone . matrix
#parent_space_pose = pose_bone.matrix
#print("parent_space_pose of the bone with no parent:")
#print(parent_space_pose)
#parent_space_pose = mapping @ pose_bone.matrix
translation = parent_space_pose . to_translation ( )
rotation = parent_space_pose . to_quaternion ( )
scale = parent_space_pose . to_scale ( )
write_v3 ( f , translation )
write_quat ( f , rotation )
write_v3 ( f , scale )
# write the mesh data for the armature
bm = bmesh . new ( )
mesh = mesh_object . to_mesh ( )
bm . from_mesh ( mesh )
bmesh . ops . triangulate ( bm , faces = bm . faces )
bm . transform ( mapping )
bm . to_mesh ( mesh )
vertices = [ ]
armature = o
for polygon in mesh . polygons :
if len ( polygon . loop_indices ) == 3 :
for loopIndex in polygon . loop_indices :
loop = mesh . loops [ loopIndex ]
position = mesh . vertices [ loop . vertex_index ] . undeformed_co
uv = mesh . uv_layers . active . data [ loop . index ] . uv
normal = loop . normal
jointIndices = [ 0 , 0 , 0 , 0 ]
jointWeights = [ 0 , 0 , 0 , 0 ]
for jointBindingIndex , group in enumerate ( mesh . vertices [ loop . vertex_index ] . groups ) :
if jointBindingIndex < 4 :
groupIndex = group . group
boneName = mesh_object . vertex_groups [ groupIndex ] . name
jointIndices [ jointBindingIndex ] = armature . data . bones . find ( boneName )
if jointIndices [ jointBindingIndex ] == - 1 :
# it's fine that this references a real bone, the bone at index 0,
# because the weight of its influence is 0
jointIndices [ jointBindingIndex ] = 0
jointWeights [ jointBindingIndex ] = 0.0
else :
jointWeights [ jointBindingIndex ] = group . weight
vertices . append ( ( position , uv , jointIndices , normalize_joint_weights ( jointWeights ) ) )
write_u64 ( f , len ( vertices ) )
vertex_i = 0
for v_and_uv in vertices :
v , uv , jointIndices , jointWeights = v_and_uv
write_f32 ( f , v . x )
write_f32 ( f , v . y )
write_f32 ( f , v . z )
write_f32 ( f , uv . x )
write_f32 ( f , uv . y )
for i in range ( 4 ) :
write_u16 ( f , jointIndices [ i ] )
for i in range ( 4 ) :
write_f32 ( f , jointWeights [ i ] )
vertex_i + = 1
print ( f " Wrote { len ( vertices ) } vertices " )
else : # if the parent type isn't an armature, i.e just a bog standard mesh
mesh_name = o . to_mesh ( ) . name # use this over o.name so instanced objects which refer to the same mesh, both use the same serialized mesh.
object_transform_info = ( mesh_name , mapping @ o . location , o . rotation_euler , o . scale )
if o . users_collection [ 0 ] . name == ' Level ' and mesh_name == " CollisionCube " :
collision_cubes . append ( ( o . location , o . dimensions ) )
else :
if o . users_collection [ 0 ] . name == ' Level ' :
print ( f " Object { o . name } has mesh name { o . to_mesh ( ) . name } and image file { image_filename } " )
assert ( o . rotation_euler . order == ' XYZ ' )
level_object_data . append ( object_transform_info )
else :
placed_entities . append ( ( o . name , ) + object_transform_info )
if mesh_name in saved_meshes :
continue
saved_meshes . add ( mesh_name )
image_filename = ensure_tex_saved_and_get_name ( o )
assert ( mesh_name != LEVEL_EXPORT_NAME )
output_filepath = bpy . path . abspath ( f " // { EXPORT_DIRECTORY } / { mesh_name } .bin " )
print ( f " Exporting mesh to { output_filepath } " )
with open ( output_filepath , " wb " ) as f :
write_b8 ( f , False ) # if it's an armature or not, first byte of the file
write_string ( f , image_filename ) # the image filename!
bm = bmesh . new ( )
mesh = o . to_mesh ( )
bm . from_mesh ( mesh )
bmesh . ops . triangulate ( bm , faces = bm . faces )
bm . transform ( mapping )
bm . to_mesh ( mesh )
vertices = [ ]
for polygon in mesh . polygons :
if len ( polygon . loop_indices ) == 3 :
for loopIndex in polygon . loop_indices :
loop = mesh . loops [ loopIndex ]
position = mesh . vertices [ loop . vertex_index ] . undeformed_co
uv = mesh . uv_layers . active . data [ loop . index ] . uv
normal = loop . normal
vertices . append ( ( position , uv ) )
write_u64 ( f , len ( vertices ) )
for v_and_uv in vertices :
v , uv = v_and_uv
write_f32 ( f , v . x )
write_f32 ( f , v . y )
write_f32 ( f , v . z )
write_f32 ( f , uv . x )
write_f32 ( f , uv . y )
print ( f " Wrote { len ( vertices ) } vertices " )
with open ( bpy . path . abspath ( f " // { EXPORT_DIRECTORY } / { LEVEL_EXPORT_NAME } .bin " ) , " wb " ) as f :
write_u64 ( f , len ( level_object_data ) )
for o in level_object_data :
mesh_name , blender_pos , blender_rotation , blender_scale = o
print ( f " Writing instanced object of mesh { mesh_name } " )
write_string ( f , mesh_name )
write_f32 ( f , blender_pos . x )
write_f32 ( f , blender_pos . y )
write_f32 ( f , blender_pos . z )
write_f32 ( f , blender_rotation . x )
write_f32 ( f , blender_rotation . y )
write_f32 ( f , blender_rotation . z )
write_f32 ( f , blender_scale . x )
write_f32 ( f , blender_scale . y )
write_f32 ( f , blender_scale . z )
write_u64 ( f , len ( collision_cubes ) )
for c in collision_cubes :
blender_pos , blender_dims = c
write_f32 ( f , blender_pos . x )
write_f32 ( f , - blender_pos . y )
write_f32 ( f , blender_dims . x )
write_f32 ( f , blender_dims . y )
assert ( blender_dims . x > 0.0 )
assert ( blender_dims . y > 0.0 )
write_u64 ( f , len ( placed_entities ) )
for p in placed_entities :
# underscore is mesh name, prefer object name for name of npc. More obvious
object_name , _ , blender_pos , blender_rotation , blender_scale = p
print ( f " Writing placed entity ' { object_name } ' " )
write_string ( f , object_name )
write_f32 ( f , blender_pos . x )
write_f32 ( f , blender_pos . y )
write_f32 ( f , blender_pos . z )
write_f32 ( f , blender_rotation . x )
write_f32 ( f , blender_rotation . y )
write_f32 ( f , blender_rotation . z )
write_f32 ( f , blender_scale . x )
write_f32 ( f , blender_scale . y )
write_f32 ( f , blender_scale . z )