#define SOKOL_IMPL #if defined(WIN32) || defined(_WIN32) #define SOKOL_D3D11 #endif #if defined(__EMSCRIPTEN__) #define SOKOL_GLES2 #endif #include "sokol_app.h" #include "sokol_gfx.h" #include "sokol_time.h" #include "sokol_glue.h" #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #define STB_TRUETYPE_IMPLEMENTATION #include "stb_truetype.h" #include "HandmadeMath.h" #pragma warning(disable : 4996) // fopen is safe. I don't care about fopen_s #include #define ARRLEN(x) ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x]))))) #define ENTITIES_ITER(ents) for(Entity *it = ents; it < ents + ARRLEN(ents); it++) if(it->exists) // so can be grep'd and removed #define dbgprint(...) { printf("Debug | %s:%d | ", __FILE__, __LINE__); printf(__VA_ARGS__); } Vec2 RotateV2(Vec2 v, float theta) { return V2( v.X * cosf(theta) - v.Y * sinf(theta), v.X * sinf(theta) + v.Y * cosf(theta) ); } typedef struct AABB { Vec2 upper_left; Vec2 lower_right; } AABB; typedef struct Quad { union { struct { Vec2 ul; // upper left Vec2 ur; // upper right Vec2 lr; // lower right Vec2 ll; // lower left }; Vec2 points[4]; }; } Quad; typedef struct TileInstance { uint16_t kind; } TileInstance; typedef struct AnimatedTile { uint16_t id_from; int num_frames; uint16_t frames[32]; } AnimatedTile; typedef struct TileSet { sg_image *img; AnimatedTile animated[128]; } TileSet; typedef struct AnimatedSprite { sg_image *img; double time_per_frame; int num_frames; Vec2 start; float horizontal_diff_btwn_frames; Vec2 region_size; bool no_wrap; // does not wrap when playing } AnimatedSprite; typedef enum CharacterState { CHARACTER_WALKING, CHARACTER_IDLE, CHARACTER_ATTACK, } CharacterState; typedef enum EntityKind { ENTITY_INVALID, // zero initialized is invalid entity ENTITY_PLAYER, ENTITY_OLD_MAN, ENTITY_BULLET, } EntityKind; #define MAX_SENTENCE_LENGTH 400 typedef struct { char text[MAX_SENTENCE_LENGTH]; } Sentence; typedef struct Dialog { Sentence sentences[8]; } Dialog; typedef struct Entity { bool exists; EntityKind kind; // fields for all entities Vec2 pos; Vec2 vel; // only used sometimes, like in old man and bullet float damage; // at 1.0, he's dead bool facing_left; // old man bool aggressive; double shotgun_timer; // character CharacterState state; bool is_rolling; // can only roll in idle or walk states float speed; // for lerping to the speed, so that roll gives speed boost which fades double time_not_rolling; // for cooldown for roll, so you can't just hold it and be invincible double roll_progress; double swing_progress; } Entity; typedef struct Overlap { bool is_tile; // in which case e will be null, naturally TileInstance t; Entity *e; } Overlap; #define MAX_COLLISIONS_RESULTS 16 typedef struct Overlapping { Overlap results[MAX_COLLISIONS_RESULTS]; int num_results; } Overlapping; #define LEVEL_TILES 60 #define TILE_SIZE 32 // in pixels #define MAX_ENTITIES 128 #define PLAYER_SPEED 3.5f // in meters per second #define PLAYER_ROLL_SPEED 7.0f typedef struct Level { TileInstance tiles[LEVEL_TILES][LEVEL_TILES]; Entity initial_entities[MAX_ENTITIES]; // shouldn't be directly modified, only used to initialize entities on loading of level } Level; typedef struct TileCoord { int x; int y; } TileCoord; // no alignment etc because lazy typedef struct Arena { char *data; size_t data_size; size_t cur; } Arena; Arena make_arena(size_t max_size) { return (Arena) { .data = calloc(max_size, 1), .data_size = max_size, .cur = 0, }; } void reset(Arena *a) { memset(a->data, 0, a->data_size); a->cur = 0; } char *get(Arena *a, size_t of_size) { assert(a->data != NULL); char *to_return = a->data + a->cur; a->cur += of_size; assert(a->cur < a->data_size); return to_return; } Arena scratch = {0}; char *tprint(const char *format, ...) { va_list argptr; va_start(argptr, format); int size = vsnprintf(NULL, 0, format, argptr) + 1; // for null terminator char *to_return = get(&scratch, size); vsnprintf(to_return, size, format, argptr); va_end(argptr); return to_return; } Vec2 entity_aabb_size(Entity *e) { if(e->kind == ENTITY_PLAYER) { return V2(TILE_SIZE, TILE_SIZE); } else if(e->kind == ENTITY_OLD_MAN) { return V2(TILE_SIZE*0.5f, TILE_SIZE*0.5f); } else if(e->kind == ENTITY_BULLET) { return V2(TILE_SIZE*0.25f, TILE_SIZE*0.25f); } else { assert(false); return (Vec2){0}; } } bool is_tile_solid(TileInstance t) { uint16_t tile_id = t.kind; return tile_id == 53 || tile_id == 0 || tile_id == 367 || tile_id == 317 || tile_id == 313 || tile_id == 366 || tile_id == 368; } // tilecoord is integer tile position, not like tile coord Vec2 tilecoord_to_world(TileCoord t) { return V2( (float)t.x * (float)TILE_SIZE * 1.0f, -(float)t.y * (float)TILE_SIZE * 1.0f ); } // points from tiled editor have their own strange and alien coordinate system (local to the tilemap Y+ down) Vec2 tilepoint_to_world(Vec2 tilepoint) { Vec2 tilecoord = MulV2F(tilepoint, 1.0/TILE_SIZE); return tilecoord_to_world((TileCoord){(int)tilecoord.X, (int)tilecoord.Y}); } TileCoord world_to_tilecoord(Vec2 w) { // world = V2(tilecoord.x * tile_size, -tilecoord.y * tile_size) // world.x = tilecoord.x * tile_size // world.x / tile_size = tilecoord.x // world.y = -tilecoord.y * tile_size // - world.y / tile_size = tilecoord.y return (TileCoord){ (int)floorf(w.X / TILE_SIZE), (int)floorf(-w.Y / TILE_SIZE) }; } AABB tile_aabb(TileCoord t) { return (AABB) { .upper_left = tilecoord_to_world(t), .lower_right = AddV2(tilecoord_to_world(t), V2(TILE_SIZE, -TILE_SIZE)), }; } Vec2 rotate_counter_clockwise(Vec2 v) { return V2(-v.Y, v.X); } Vec2 aabb_center(AABB aabb) { return MulV2F(AddV2(aabb.upper_left, aabb.lower_right), 0.5f); } AABB centered_aabb(Vec2 at, Vec2 size) { return (AABB){ .upper_left = AddV2(at, V2(-size.X/2.0f, size.Y/2.0f)), .lower_right = AddV2(at, V2( size.X/2.0f, -size.Y/2.0f)), }; } AABB entity_aabb(Entity *e) { return centered_aabb(e->pos, entity_aabb_size(e)); } TileInstance get_tile(Level *l, TileCoord t) { bool out_of_bounds = false; out_of_bounds |= t.x < 0; out_of_bounds |= t.x >= LEVEL_TILES; out_of_bounds |= t.y < 0; out_of_bounds |= t.y >= LEVEL_TILES; //assert(!out_of_bounds); if(out_of_bounds) return (TileInstance){0}; return l->tiles[t.y][t.x]; } sg_image load_image(const char *path) { sg_image to_return = {0}; int png_width, png_height, num_channels; const int desired_channels = 4; stbi_uc* pixels = stbi_load( path, &png_width, &png_height, &num_channels, 0); assert(pixels); dbgprint("Pah %s | Loading image with dimensions %d %d\n", path, png_width, png_height); to_return = sg_make_image(&(sg_image_desc) { .width = png_width, .height = png_height, .pixel_format = SG_PIXELFORMAT_RGBA8, .min_filter = SG_FILTER_NEAREST, .num_mipmaps = 0, .wrap_u = SG_WRAP_CLAMP_TO_EDGE, .wrap_v = SG_WRAP_CLAMP_TO_EDGE, .mag_filter = SG_FILTER_NEAREST, .data.subimage[0][0] = { .ptr = pixels, .size = (size_t)(png_width * png_height * 4), } }); stbi_image_free(pixels); return to_return; } #include "quad-sapp.glsl.h" #include "assets.gen.c" AnimatedSprite knight_idle = { .img = &image_knight_idle, .time_per_frame = 0.3, .num_frames = 10, .start = {16.0f, 0.0f}, .horizontal_diff_btwn_frames = 120.0, .region_size = {80.0f, 80.0f}, }; AnimatedSprite knight_running = { .img = &image_knight_run, .time_per_frame = 0.06, .num_frames = 10, .start = {19.0f, 0.0f}, .horizontal_diff_btwn_frames = 120.0, .region_size = {80.0f, 80.0f}, }; AnimatedSprite knight_rolling = { .img = &image_knight_roll, .time_per_frame = 0.05, .num_frames = 12, .start = {19.0f, 0.0f}, .horizontal_diff_btwn_frames = 120.0, .region_size = {80.0f, 80.0f}, .no_wrap = true, }; AnimatedSprite knight_attack = { .img = &image_knight_attack, .time_per_frame = 0.06, .num_frames = 4, .start = {37.0f, 0.0f}, .horizontal_diff_btwn_frames = 120.0, .region_size = {80.0f, 80.0f}, .no_wrap = true, }; AnimatedSprite old_man_idle = { .img = &image_old_man, .time_per_frame = 0.4, .num_frames = 4, .start = {0.0, 0.0}, .horizontal_diff_btwn_frames = 16.0f, .region_size = {16.0f, 16.0f}, }; sg_image image_font = {0}; const float font_size = 32.0; stbtt_bakedchar cdata[96]; // ASCII 32..126 is 95 glyphs static struct { sg_pass_action pass_action; sg_pipeline pip; sg_bindings bind; } state; AABB level_aabb = { .upper_left = {0.0f, 0.0f}, .lower_right = {2000.0f, -2000.0f} }; Entity entities[MAX_ENTITIES] = {0}; Entity *player = NULL; Entity *new_entity() { for(int i = 0; i < ARRLEN(entities); i++) { if(!entities[i].exists) { Entity *to_return = &entities[i]; *to_return = (Entity){0}; to_return->exists = true; return to_return; } } assert(false); return NULL; } void reset_level() { // load level Level *to_load = &level_level0; { assert(ARRLEN(to_load->initial_entities) == ARRLEN(entities)); memcpy(entities, to_load->initial_entities, sizeof(Entity) * MAX_ENTITIES); player = NULL; ENTITIES_ITER(entities) { if(it->kind == ENTITY_PLAYER) { assert(player == NULL); player = it; } } assert(player != NULL); // level initial config must have player entity } } void init(void) { sg_setup(&(sg_desc){ .context = sapp_sgcontext(), }); stm_setup(); scratch = make_arena(1024 * 10); load_assets(); reset_level(); // load font { FILE* fontFile = fopen("assets/orange kid.ttf", "rb"); fseek(fontFile, 0, SEEK_END); size_t size = ftell(fontFile); /* how long is the file ? */ fseek(fontFile, 0, SEEK_SET); /* reset */ unsigned char *fontBuffer = malloc(size); fread(fontBuffer, size, 1, fontFile); fclose(fontFile); unsigned char *font_bitmap = calloc(1, 512*512); stbtt_BakeFontBitmap(fontBuffer, 0, font_size, font_bitmap, 512, 512, 32, 96, cdata); unsigned char *font_bitmap_rgba = malloc(4 * 512 * 512); // stack would be too big if allocated on stack (stack overflow) for(int i = 0; i < 512 * 512; i++) { font_bitmap_rgba[i*4 + 0] = 255; font_bitmap_rgba[i*4 + 1] = 255; font_bitmap_rgba[i*4 + 2] = 255; font_bitmap_rgba[i*4 + 3] = font_bitmap[i]; } image_font = sg_make_image( &(sg_image_desc){ .width = 512, .height = 512, .pixel_format = SG_PIXELFORMAT_RGBA8, .min_filter = SG_FILTER_NEAREST, .mag_filter = SG_FILTER_NEAREST, .data.subimage[0][0] = { .ptr = font_bitmap_rgba, .size = (size_t)(512 * 512 * 4), } } ); free(font_bitmap_rgba); } state.bind.vertex_buffers[0] = sg_make_buffer(&(sg_buffer_desc) { .usage = SG_USAGE_STREAM, //.data = SG_RANGE(vertices), .size = 1024*500, .label = "quad-vertices" }); const sg_shader_desc *desc = quad_program_shader_desc(sg_query_backend()); assert(desc); sg_shader shd = sg_make_shader(desc); state.pip = sg_make_pipeline(&(sg_pipeline_desc) { .shader = shd, .layout = { .attrs = { [ATTR_quad_vs_position].format = SG_VERTEXFORMAT_FLOAT2, [ATTR_quad_vs_texcoord0].format = SG_VERTEXFORMAT_FLOAT2, } }, .colors[0].blend = (sg_blend_state) { // allow transparency .enabled = true, .src_factor_rgb = SG_BLENDFACTOR_SRC_ALPHA, .dst_factor_rgb = SG_BLENDFACTOR_ONE_MINUS_SRC_ALPHA, .op_rgb = SG_BLENDOP_ADD, .src_factor_alpha = SG_BLENDFACTOR_ONE, .dst_factor_alpha = SG_BLENDFACTOR_ONE_MINUS_SRC_ALPHA, .op_alpha = SG_BLENDOP_ADD, }, .label = "quad-pipeline", }); state.pass_action = (sg_pass_action) { //.colors[0] = { .action=SG_ACTION_CLEAR, .value={12.5f/255.0f, 12.5f/255.0f, 12.5f/255.0f, 1.0f } } //.colors[0] = { .action=SG_ACTION_CLEAR, .value={255.5f/255.0f, 255.5f/255.0f, 255.5f/255.0f, 1.0f } } // 0x898989 is the color in tiled .colors[0] = { .action=SG_ACTION_CLEAR, .value={137.0f/255.0f, 137.0f/255.0f, 137.0f/255.0f, 1.0f } } }; } typedef Vec4 Color; #define WHITE (Color){1.0f, 1.0f, 1.0f, 1.0f} #define BLACK (Color){0.0f, 0.0f, 0.0f, 1.0f} #define RED (Color){1.0f, 0.0f, 0.0f, 1.0f} #define GREEN (Color){0.0f, 1.0f, 0.0f, 1.0f} Vec2 screen_size() { return V2((float)sapp_width(), (float)sapp_height()); } typedef struct Camera { Vec2 pos; float scale; } Camera; // everything is in pixels in world space, 43 pixels is approx 1 meter measured from // merchant sprite being 5'6" const float pixels_per_meter = 43.0f; Camera cam = {.scale = 2.0f }; Vec2 cam_offset() { return AddV2(cam.pos, MulV2F(screen_size(), 0.5f)); } // in pixels Vec2 img_size(sg_image img) { sg_image_info info = sg_query_image_info(img); return V2((float)info.width, (float)info.height); } // full region in pixels AABB full_region(sg_image img) { return (AABB) { .upper_left = V2(0.0f, 0.0f), .lower_right = img_size(img), }; } // screen coords are in pixels counting from bottom left as (0,0), Y+ is up Vec2 world_to_screen(Vec2 world) { Vec2 to_return = world; to_return = MulV2F(to_return, cam.scale); to_return = AddV2(to_return, cam_offset()); return to_return; } Vec2 screen_to_world(Vec2 screen) { Vec2 to_return = screen; to_return = SubV2(to_return, cam_offset()); to_return = MulV2F(to_return, 1.0f/cam.scale); return to_return; } Quad quad_at(Vec2 at, Vec2 size) { Quad to_return; to_return.points[0] = V2(0.0, 0.0); to_return.points[1] = V2(size.X, 0.0); to_return.points[2] = V2(size.X, -size.Y); to_return.points[3] = V2(0.0, -size.Y); for(int i = 0; i < 4; i++) { to_return.points[i] = AddV2(to_return.points[i], at); } return to_return; } Quad tile_quad(TileCoord coord) { Quad to_return = quad_at(tilecoord_to_world(coord), V2(TILE_SIZE, TILE_SIZE)); return to_return; } // out must be of at least length 4 Quad quad_centered(Vec2 at, Vec2 size) { Quad to_return = quad_at(at, size); for(int i = 0; i < 4; i++) { to_return.points[i] = AddV2(to_return.points[i], V2(-size.X*0.5f, size.Y*0.5f)); } return to_return; } Quad quad_aabb(AABB aabb) { Vec2 size_vec = SubV2(aabb.lower_right, aabb.upper_left); // negative in vertical direction assert(size_vec.Y <= 0.0f); assert(size_vec.X >= 0.0f); return (Quad) { .ul = aabb.upper_left, .ur = AddV2(aabb.upper_left, V2(size_vec.X, 0.0f)), .lr = AddV2(aabb.upper_left, size_vec), .ll = AddV2(aabb.upper_left, V2(0.0f, size_vec.Y)), }; } // both segment_a and segment_b must be arrays of length 2 bool segments_overlapping(float *a_segment, float *b_segment) { assert(a_segment[1] >= a_segment[0]); assert(b_segment[1] >= b_segment[0]); float total_length = (a_segment[1] - a_segment[0]) + (b_segment[1] - b_segment[0]); float farthest_to_left = fminf(a_segment[0], b_segment[0]); float farthest_to_right = fmaxf(a_segment[1], b_segment[1]); if (farthest_to_right - farthest_to_left < total_length) { return true; } else { return false; } } bool overlapping(AABB a, AABB b) { // x axis { float a_segment[2] = { a.upper_left.X, a.lower_right.X }; float b_segment[2] = { b.upper_left.X, b.lower_right.X }; if(segments_overlapping(a_segment, b_segment)) { } else { return false; } } // y axis { float a_segment[2] = { a.lower_right.Y, a.upper_left.Y }; float b_segment[2] = { b.lower_right.Y, b.upper_left.Y }; if(segments_overlapping(a_segment, b_segment)) { } else { return false; } } return true; // both segments overlapping } bool has_point(AABB aabb, Vec2 point) { return (aabb.upper_left.X < point.X && point.X < aabb.lower_right.X) && (aabb.upper_left.Y > point.Y && point.Y > aabb.lower_right.Y); } int num_draw_calls = 0; float cur_batch_data[2048] = {0}; int cur_batch_data_index = 0; // @TODO check last tint as well, do this when factor into drawing parameters sg_image cur_batch_image = {0}; quad_fs_params_t cur_batch_params = {0}; void flush_quad_batch() { if(cur_batch_image.id == 0) return; // flush called when image changes, image starts out null! state.bind.vertex_buffer_offsets[0] = sg_append_buffer(state.bind.vertex_buffers[0], &(sg_range){cur_batch_data, cur_batch_data_index*sizeof(*cur_batch_data)}); state.bind.fs_images[SLOT_quad_tex] = cur_batch_image; sg_apply_bindings(&state.bind); sg_apply_uniforms(SG_SHADERSTAGE_FS, SLOT_quad_fs_params, &SG_RANGE(cur_batch_params)); assert(cur_batch_data_index % 4 == 0); sg_draw(0, cur_batch_data_index/4, 1); num_draw_calls += 1; memset(cur_batch_data, 0, cur_batch_data_index); cur_batch_data_index = 0; } // The image region is in pixel space of the image void draw_quad(bool world_space, Quad quad, sg_image image, AABB image_region, Color tint) { Vec2 *points = quad.points; if(world_space) { for(int i = 0; i < 4; i++) { points[i] = world_to_screen(points[i]); } } AABB cam_aabb = { .upper_left = V2(0.0, screen_size().Y), .lower_right = V2(screen_size().X, 0.0) }; AABB points_bounding_box = { .upper_left = V2(INFINITY, -INFINITY), .lower_right = V2(-INFINITY, INFINITY) }; for(int i = 0; i < 4; i++) { points_bounding_box.upper_left.X = fminf(points_bounding_box.upper_left.X, points[i].X); points_bounding_box.upper_left.Y = fmaxf(points_bounding_box.upper_left.Y, points[i].Y); points_bounding_box.lower_right.X = fmaxf(points_bounding_box.lower_right.X, points[i].X); points_bounding_box.lower_right.Y = fminf(points_bounding_box.lower_right.Y, points[i].Y); } if(!overlapping(cam_aabb, points_bounding_box)) { //dbgprint("Out of screen, cam aabb %f %f %f %f\n", cam_aabb.upper_left.X, cam_aabb.upper_left.Y, cam_aabb.lower_right.X, cam_aabb.lower_right.Y); //dbgprint("Points boundig box %f %f %f %f\n", points_bounding_box.upper_left.X, points_bounding_box.upper_left.Y, points_bounding_box.lower_right.X, points_bounding_box.lower_right.Y); return; // cull out of screen quads } float new_vertices[ (2 + 2)*4 ]; Vec2 region_size = SubV2(image_region.lower_right, image_region.upper_left); assert(region_size.X > 0.0); assert(region_size.Y > 0.0); Vec2 tex_coords[4] = { AddV2(image_region.upper_left, V2(0.0, 0.0)), AddV2(image_region.upper_left, V2(region_size.X, 0.0)), AddV2(image_region.upper_left, V2(region_size.X, region_size.Y)), AddV2(image_region.upper_left, V2(0.0, region_size.Y)), }; // convert to uv space sg_image_info info = sg_query_image_info(image); for(int i = 0; i < 4; i++) { tex_coords[i] = DivV2(tex_coords[i], V2((float)info.width, (float)info.height)); } for(int i = 0; i < 4; i++) { Vec2 zero_to_one = DivV2(points[i], screen_size()); Vec2 in_clip_space = SubV2(MulV2F(zero_to_one, 2.0), V2(1.0, 1.0)); new_vertices[i*4] = in_clip_space.X; new_vertices[i*4 + 1] = in_clip_space.Y; new_vertices[i*4 + 2] = tex_coords[i].X; new_vertices[i*4 + 3] = tex_coords[i].Y; } quad_fs_params_t params = {0}; params.tint[0] = tint.R; params.tint[1] = tint.G; params.tint[2] = tint.B; params.tint[3] = tint.A; size_t total_size = ARRLEN(new_vertices)*sizeof(new_vertices); // batched a little too close to the sun if(cur_batch_data_index + total_size >= ARRLEN(cur_batch_data)) { flush_quad_batch(); } #define PUSH_VERTEX(vert) { memcpy(&cur_batch_data[cur_batch_data_index], &vert, 4*sizeof(float)); cur_batch_data_index += 4; } PUSH_VERTEX(new_vertices[0*4]); PUSH_VERTEX(new_vertices[1*4]); PUSH_VERTEX(new_vertices[2*4]); PUSH_VERTEX(new_vertices[0*4]); PUSH_VERTEX(new_vertices[2*4]); PUSH_VERTEX(new_vertices[3*4]); #undef PUSH_VERTEX if(image.id != cur_batch_image.id) { flush_quad_batch(); cur_batch_image = image; cur_batch_params = params; } } void swap(Vec2 *p1, Vec2 *p2) { Vec2 tmp = *p1; *p1 = *p2; *p2 = tmp; } double anim_sprite_duration(AnimatedSprite *s) { return s->num_frames * s->time_per_frame; } void draw_animated_sprite(AnimatedSprite *s, double elapsed_time, bool flipped, Vec2 pos, Color tint) { sg_image spritesheet_img = *s->img; int index = (int)floor(elapsed_time/s->time_per_frame) % s->num_frames; if(s->no_wrap) { index = (int)floor(elapsed_time/s->time_per_frame); if(index >= s->num_frames) index = s->num_frames - 1; } Quad q = quad_centered(pos, s->region_size); if(flipped) { swap(&q.points[0], &q.points[1]); swap(&q.points[3], &q.points[2]); } AABB region; region.upper_left = AddV2(s->start, V2(index * s->horizontal_diff_btwn_frames, 0.0f)); region.lower_right = V2(region.upper_left.X + (float)s->region_size.X, (float)s->region_size.Y); draw_quad(true, q, spritesheet_img, region, tint); } Vec2 tile_id_to_coord(sg_image tileset_image, Vec2 tile_size, uint16_t tile_id) { int tiles_per_row = (int)(img_size(tileset_image).X / tile_size.X); int tile_index = tile_id - 1; int tile_image_row = tile_index / tiles_per_row; int tile_image_col = tile_index - tile_image_row*tiles_per_row; Vec2 tile_image_coord = V2((float)tile_image_col * tile_size.X, (float)tile_image_row*tile_size.Y); return tile_image_coord; } void colorquad(bool world_space, Quad q, Color col) { draw_quad(world_space, q, image_white_square, full_region(image_white_square), col); } void dbgsquare(Vec2 at) { colorquad(true, quad_centered(at, V2(10.0, 10.0)), RED); } // in world coordinates void line(Vec2 from, Vec2 to, float line_width, Color color) { Vec2 normal = rotate_counter_clockwise(NormV2(SubV2(to, from))); Quad line_quad = { .points = { AddV2(from, MulV2F(normal, line_width)), // upper left AddV2(to, MulV2F(normal, line_width)), // upper right AddV2(to, MulV2F(normal, -line_width)), // lower right AddV2(from, MulV2F(normal, -line_width)), // lower left } }; colorquad(true, line_quad, color); } void dbgline(Vec2 from, Vec2 to) { #ifdef DEVTOOLS line(from, to, 2.0f, RED); #else (void)from; (void)to; #endif } // in world space void dbgrect(AABB rect) { #ifdef DEVTOOLS const float line_width = 0.5; const Color col = RED; Quad q = quad_aabb(rect); line(q.ul, q.ur, line_width, col); line(q.ur, q.lr, line_width, col); line(q.lr, q.ll, line_width, col); line(q.ll, q.ul, line_width, col); #else (void)rect; #endif } // returns bounds. To measure text you can set dry run to true and get the bounds AABB draw_text(bool world_space, bool dry_run, const char *text, Vec2 pos, Color color, float scale) { size_t text_len = strlen(text); AABB bounds = {0}; float y = 0.0; float x = 0.0; for(int i = 0; i < text_len; i++) { stbtt_aligned_quad q; float old_y = y; stbtt_GetBakedQuad(cdata, 512, 512, text[i]-32, &x, &y, &q, 1); float difference = y - old_y; y = old_y + difference; Vec2 size = V2(q.x1 - q.x0, q.y1 - q.y0); if(text[i] == '\n') { #ifdef DEVTOOLS y += font_size*0.75f; // arbitrary, only debug text has newlines x = 0.0; #else assert(false); #endif } if(size.Y > 0.0 && size.X > 0.0) { // spaces (and maybe other characters) produce quads of size 0 Quad to_draw = { .points = { AddV2(V2(q.x0, -q.y0), V2(0.0f, 0.0f)), AddV2(V2(q.x0, -q.y0), V2(size.X, 0.0f)), AddV2(V2(q.x0, -q.y0), V2(size.X, -size.Y)), AddV2(V2(q.x0, -q.y0), V2(0.0f, -size.Y)), }, }; for(int i = 0; i < 4; i++) { to_draw.points[i] = MulV2F(to_draw.points[i], scale); } AABB font_atlas_region = (AABB) { .upper_left = V2(q.s0, q.t0), .lower_right = V2(q.s1, q.t1), }; font_atlas_region.upper_left.X *= img_size(image_font).X; font_atlas_region.lower_right.X *= img_size(image_font).X; font_atlas_region.upper_left.Y *= img_size(image_font).Y; font_atlas_region.lower_right.Y *= img_size(image_font).Y; for(int i = 0; i < 4; i++) { bounds.upper_left.X = fminf(bounds.upper_left.X, to_draw.points[i].X); bounds.upper_left.Y = fmaxf(bounds.upper_left.Y, to_draw.points[i].Y); bounds.lower_right.X = fmaxf(bounds.lower_right.X, to_draw.points[i].X); bounds.lower_right.Y = fminf(bounds.lower_right.Y, to_draw.points[i].Y); } for(int i = 0; i < 4; i++) { to_draw.points[i] = AddV2(to_draw.points[i], pos); } if(!dry_run) { draw_quad(world_space, to_draw, image_font, font_atlas_region, color); } } } bounds.upper_left = AddV2(bounds.upper_left, pos); bounds.lower_right = AddV2(bounds.lower_right, pos); return bounds; } // gets aabbs overlapping the input aabb, including entities and tiles Overlapping get_overlapping(Level *l, AABB aabb) { Overlapping to_return = {0}; Quad q = quad_aabb(aabb); // the corners, jessie for(int i = 0; i < 4; i++) { TileInstance t = get_tile(l, world_to_tilecoord(q.points[i])); if(is_tile_solid(t)) { to_return.results[to_return.num_results++] = (Overlap) { .is_tile = true, .t = t }; assert(to_return.num_results < ARRLEN(to_return.results)); } } // the entities jessie ENTITIES_ITER(entities) { if(!(it->kind == ENTITY_PLAYER && it->is_rolling) && overlapping(aabb, entity_aabb(it))) { to_return.results[to_return.num_results++] = (Overlap) { .e = it, }; assert(to_return.num_results < ARRLEN(to_return.results)); } } return to_return; } // returns new pos after moving and sliding against collidable things Vec2 move_and_slide(Entity *from, Vec2 position, Vec2 movement_this_frame) { Vec2 collision_aabb_size = entity_aabb_size(from); Vec2 new_pos = AddV2(position, movement_this_frame); AABB at_new = centered_aabb(new_pos, collision_aabb_size); dbgrect(at_new); AABB to_check[256] = {0}; int to_check_index = 0; // add tilemap boxes { Vec2 at_new_size_vector = SubV2(at_new.lower_right, at_new.upper_left); Vec2 points_to_check[] = { AddV2(at_new.upper_left, V2(0.0, 0.0)), AddV2(at_new.upper_left, V2(at_new_size_vector.X, 0.0)), AddV2(at_new.upper_left, V2(at_new_size_vector.X, at_new_size_vector.Y)), AddV2(at_new.upper_left, V2(0.0, at_new_size_vector.Y)), }; for(int i = 0; i < ARRLEN(points_to_check); i++) { Vec2 *it = &points_to_check[i]; TileCoord tilecoord_to_check = world_to_tilecoord(*it); if(is_tile_solid(get_tile(&level_level0, tilecoord_to_check))) { to_check[to_check_index++] = tile_aabb(tilecoord_to_check); assert(to_check_index < ARRLEN(to_check)); } } } // add entity boxes if(!(from->kind == ENTITY_PLAYER && from->is_rolling)) { ENTITIES_ITER(entities) { if(!(it->kind == ENTITY_PLAYER && it->is_rolling) && it != from) { to_check[to_check_index++] = centered_aabb(it->pos, entity_aabb_size(it)); assert(to_check_index < ARRLEN(to_check)); } } } for(int i = 0; i < to_check_index; i++) { AABB to_depenetrate_from = to_check[i]; dbgrect(to_depenetrate_from); int iters_tried_to_push_apart = 0; while(overlapping(to_depenetrate_from, at_new) && iters_tried_to_push_apart < 500) { //dbgsquare(to_depenetrate_from.upper_left); //dbgsquare(to_depenetrate_from.lower_right); const float move_dist = 0.05f; Vec2 to_player = NormV2(SubV2(aabb_center(at_new), aabb_center(to_depenetrate_from))); Vec2 compass_dirs[4] = { V2( 1.0, 0.0), V2(-1.0, 0.0), V2(0.0, 1.0), V2(0.0, -1.0), }; int closest_index = -1; float closest_dot = -99999999.0f; for(int i = 0; i < 4; i++) { float dot = DotV2(compass_dirs[i], to_player); if(dot > closest_dot) { closest_index = i; closest_dot = dot; } } assert(closest_index != -1); Vec2 move_dir = compass_dirs[closest_index]; Vec2 move = MulV2F(move_dir, move_dist); at_new.upper_left = AddV2(at_new.upper_left,move); at_new.lower_right = AddV2(at_new.lower_right,move); iters_tried_to_push_apart++; } } return aabb_center(at_new); } // returns next vertical cursor position float draw_wrapped_text(Vec2 at_point, float max_width, char *text, float text_scale, Color color) { char *sentence_to_draw = text; size_t sentence_len = strlen(sentence_to_draw); Vec2 cursor = at_point; while(sentence_len > 0) { char line_to_draw[MAX_SENTENCE_LENGTH] = {0}; size_t chars_from_sentence = 0; AABB line_bounds = {0}; while(chars_from_sentence <= sentence_len) { memset(line_to_draw, 0, MAX_SENTENCE_LENGTH); memcpy(line_to_draw, sentence_to_draw, chars_from_sentence); line_bounds = draw_text(true, true, line_to_draw, cursor, color, text_scale); if(line_bounds.lower_right.X > at_point.X + max_width) { // too big assert(chars_from_sentence > 0); chars_from_sentence -= 1; break; } chars_from_sentence += 1; } if(chars_from_sentence > sentence_len) chars_from_sentence--; memset(line_to_draw, 0, MAX_SENTENCE_LENGTH); memcpy(line_to_draw, sentence_to_draw, chars_from_sentence); float line_height = line_bounds.upper_left.Y - line_bounds.lower_right.Y; AABB drawn_bounds = draw_text(true, false, line_to_draw, AddV2(cursor, V2(0.0f, -line_height)), color, text_scale); dbgrect(drawn_bounds); sentence_len -= chars_from_sentence; sentence_to_draw += chars_from_sentence; cursor = V2(drawn_bounds.upper_left.X, drawn_bounds.lower_right.Y); } return cursor.Y; } double elapsed_time = 0.0; double last_frame_processing_time = 0.0; uint64_t last_frame_time; Vec2 mouse_pos = {0}; // in screen space bool keydown[SAPP_KEYCODE_MENU] = {0}; #ifdef DEVTOOLS bool mouse_frozen = false; #endif void frame(void) { #if 0 { sg_begin_default_pass(&state.pass_action, sapp_width(), sapp_height()); sg_apply_pipeline(state.pip); //colorquad(false, quad_at(V2(0.0, 100.0), V2(100.0f, 100.0f)), RED); sg_image img = image_wonky_mystery_tile; AABB region = full_region(img); //region.lower_right.X *= 0.5f; draw_quad(false,quad_at(V2(0.0, 100.0), V2(100.0f, 100.0f)), img, region, WHITE); sg_end_pass(); sg_commit(); reset(&scratch); } return; #endif uint64_t time_start_frame = stm_now(); // elapsed_time double dt_double = 0.0; { dt_double = stm_sec(stm_diff(stm_now(), last_frame_time)); dt_double = fmin(dt_double, 5.0 / 60.0); // clamp dt at maximum 5 frames, avoid super huge dt elapsed_time += dt_double; last_frame_time = stm_now(); } float dt = (float)dt_double; Vec2 movement = V2( (float)keydown[SAPP_KEYCODE_D] - (float)keydown[SAPP_KEYCODE_A], (float)keydown[SAPP_KEYCODE_W] - (float)keydown[SAPP_KEYCODE_S] ); bool attack = keydown[SAPP_KEYCODE_J]; bool roll = keydown[SAPP_KEYCODE_K]; if(LenV2(movement) > 1.0) { movement = NormV2(movement); } sg_begin_default_pass(&state.pass_action, sapp_width(), sapp_height()); sg_apply_pipeline(state.pip); // tilemap #if 1 Level * cur_level = &level_level0; for(int row = 0; row < LEVEL_TILES; row++) { for(int col = 0; col < LEVEL_TILES; col++) { TileCoord cur_coord = { col, row }; TileInstance cur = get_tile(cur_level, cur_coord); TileSet tileset = tileset_ruins_animated; if(cur.kind != 0) { Vec2 tile_size = V2(TILE_SIZE, TILE_SIZE); sg_image tileset_image = *tileset.img; Vec2 tile_image_coord = tile_id_to_coord(tileset_image, tile_size, cur.kind); AnimatedTile *anim = NULL; for(int i = 0; i < sizeof(tileset.animated)/sizeof(*tileset.animated); i++) { if(tileset.animated[i].id_from == cur.kind-1) { anim = &tileset.animated[i]; } } if(anim) { double time_per_frame = 0.1; int frame_index = (int)(elapsed_time/time_per_frame) % anim->num_frames; tile_image_coord = tile_id_to_coord(tileset_image, tile_size, anim->frames[frame_index]+1); } AABB region; region.upper_left = tile_image_coord; region.lower_right = AddV2(region.upper_left, tile_size); draw_quad(true, tile_quad(cur_coord), tileset_image, region, WHITE); } } } #endif assert(player != NULL); #ifdef DEVTOOLS dbgsquare(screen_to_world(mouse_pos)); // tile coord { TileCoord hovering = world_to_tilecoord(screen_to_world(mouse_pos)); Vec2 points[4] ={0}; AABB q = tile_aabb(hovering); dbgrect(q); draw_text(false, false, tprint("%d", get_tile(&level_level0, hovering).kind), world_to_screen(tilecoord_to_world(hovering)), BLACK, 1.0f); } // debug draw font image { draw_quad(true, quad_centered(V2(0.0, 0.0), V2(250.0, 250.0)), image_font,full_region(image_font), WHITE); } // statistics { Vec2 pos = V2(0.0, screen_size().Y); int num_entities = 0; ENTITIES_ITER(entities) num_entities++; char *stats = tprint("Frametime: %.1f ms\nProcessing: %.1f ms\nEntities: %d\nDraw calls: %d\n", dt*1000.0, last_frame_processing_time*1000.0, num_entities, num_draw_calls); AABB bounds = draw_text(false, true, stats, pos, BLACK, 1.0f); pos.Y -= bounds.upper_left.Y - screen_size().Y; bounds = draw_text(false, true, stats, pos, BLACK, 1.0f); // background panel colorquad(false, quad_aabb(bounds), (Color){1.0, 1.0, 1.0, 0.3f}); draw_text(false, false, stats, pos, BLACK, 1.0f); num_draw_calls = 0; } #endif // devtools // entities ENTITIES_ITER(entities) { if(it->kind == ENTITY_OLD_MAN) { if(it->aggressive) { Entity *targeting = player; it->shotgun_timer += dt; Vec2 to_player = NormV2(SubV2(targeting->pos, it->pos)); if(it->shotgun_timer >= 1.0f) { it->shotgun_timer = 0.0f; const float spread = (float)PI/4.0f; // shoot shotgun for(int i = 0; i < 3; i++) { Vec2 dir = to_player; float theta = Lerp(-spread/2.0f, ((float)i / 2.0f), spread/2.0f); dir = RotateV2(dir, theta); Entity *new_bullet = new_entity(); new_bullet->kind = ENTITY_BULLET; new_bullet->pos = AddV2(it->pos, MulV2F(dir, 20.0f)); new_bullet->vel = MulV2F(dir, 10.0f); it->vel = AddV2(it->vel, MulV2F(dir, -3.0f)); } } Vec2 target_vel = NormV2(AddV2(rotate_counter_clockwise(to_player), MulV2F(to_player, 0.5f))); target_vel = MulV2F(target_vel, 3.0f); it->vel = LerpV2(it->vel, 15.0f * dt, target_vel); it->pos = move_and_slide(it, it->pos, MulV2F(it->vel, pixels_per_meter * dt)); } draw_animated_sprite(&old_man_idle, elapsed_time, false, it->pos, WHITE); } else if (it->kind == ENTITY_BULLET) { it->pos = AddV2(it->pos, MulV2F(it->vel, pixels_per_meter * dt)); draw_quad(true, quad_aabb(entity_aabb(it)), image_white_square, full_region(image_white_square), WHITE); Overlapping over = get_overlapping(cur_level, entity_aabb(it)); for(int i = 0; i < over.num_results; i++) if(over.results[i].e != it) { if(!over.results[i].is_tile) { // knockback and damage Entity *hit = over.results[i].e; if(hit->kind == ENTITY_OLD_MAN) hit->aggressive = true; hit->vel = MulV2F(NormV2(SubV2(hit->pos, it->pos)), 5.0f); hit->damage += 0.2f; *it = (Entity){0}; } } if(!has_point(level_aabb, it->pos)) *it = (Entity){0}; } else if(it->kind == ENTITY_PLAYER) { } else { assert(false); } } // process player character { Vec2 character_sprite_pos = AddV2(player->pos, V2(0.0, 20.0f)); if(attack && (player->state == CHARACTER_IDLE || player->state == CHARACTER_WALKING)) { player->state = CHARACTER_ATTACK; player->swing_progress = 0.0; } // rolling if(roll && !player->is_rolling && player->time_not_rolling > 0.3f && (player->state == CHARACTER_IDLE || player->state == CHARACTER_WALKING)) { player->is_rolling = true; player->roll_progress = 0.0; player->speed = PLAYER_ROLL_SPEED; } if(player->state != CHARACTER_IDLE && player->state != CHARACTER_WALKING) { player->roll_progress = 0.0; player->is_rolling = false; } if(player->is_rolling) { player->time_not_rolling = 0.0f; player->roll_progress += dt; if(player->roll_progress > anim_sprite_duration(&knight_rolling)) { player->is_rolling = false; } } if(!player->is_rolling) player->time_not_rolling += dt; cam.pos = LerpV2(cam.pos, dt*8.0f, MulV2F(player->pos, -1.0f * cam.scale)); if(player->state == CHARACTER_WALKING) { if(player->speed <= 0.01f) player->speed = PLAYER_SPEED; player->speed = Lerp(player->speed, dt * 3.0f, PLAYER_SPEED); player->pos = move_and_slide(player, player->pos, MulV2F(movement, dt * pixels_per_meter * player->speed)); if(player->is_rolling) { draw_animated_sprite(&knight_rolling, player->roll_progress, player->facing_left, character_sprite_pos, WHITE); } else { draw_animated_sprite(&knight_running, elapsed_time, player->facing_left, character_sprite_pos, WHITE); } if(LenV2(movement) == 0.0) { player->state = CHARACTER_IDLE; } else { player->facing_left = movement.X < 0.0f; } } else if(player->state == CHARACTER_IDLE) { if(player->is_rolling) { draw_animated_sprite(&knight_rolling, player->roll_progress, player->facing_left, character_sprite_pos, WHITE); } else { draw_animated_sprite(&knight_idle, elapsed_time, player->facing_left, character_sprite_pos, WHITE); } if(LenV2(movement) > 0.01) player->state = CHARACTER_WALKING; } else if(player->state == CHARACTER_ATTACK) { AABB weapon_aabb = {0}; if(player->facing_left) { weapon_aabb = (AABB){ .upper_left = AddV2(player->pos, V2(-40.0, 25.0)), .lower_right = AddV2(player->pos, V2(0.0, -25.0)), }; } else { weapon_aabb = (AABB){ .upper_left = AddV2(player->pos, V2(0.0, 25.0)), .lower_right = AddV2(player->pos, V2(40.0, -25.0)), }; } dbgrect(weapon_aabb); Overlapping overlapping_weapon = get_overlapping(cur_level, weapon_aabb); for(int i = 0; i < overlapping_weapon.num_results; i++) { if(!overlapping_weapon.results[i].is_tile) { Entity *e = overlapping_weapon.results[i].e; if(e->kind == ENTITY_OLD_MAN) { e->aggressive = true; } } } player->swing_progress += dt; draw_animated_sprite(&knight_attack, player->swing_progress, player->facing_left, character_sprite_pos, WHITE); if(player->swing_progress > anim_sprite_duration(&knight_attack)) { player->state = CHARACTER_IDLE; } } // health if(player->damage >= 1.0) { reset_level(); } else { draw_quad(false, (Quad){.ul=V2(0.0f, screen_size().Y), .ur = screen_size(), .lr = V2(screen_size().X, 0.0f)}, image_hurt_vignette, full_region(image_hurt_vignette), (Color){1.0f, 1.0f, 1.0f, player->damage}); } } // do dialog AABB dialog_rect = centered_aabb(player->pos, V2(TILE_SIZE*2.0f, TILE_SIZE*2.0f)); dbgrect(dialog_rect); Overlapping possible_dialogs = get_overlapping(cur_level, dialog_rect); Entity *closest_talkto = NULL; float closest_talkto_dist = INFINITY; for(int i = 0; i < possible_dialogs.num_results; i++) { Overlap *it = &possible_dialogs.results[i]; if(!it->is_tile && it->e->kind == ENTITY_OLD_MAN && !it->e->aggressive) { float dist = LenV2(SubV2(it->e->pos, player->pos)); if(dist < closest_talkto_dist) { closest_talkto_dist = dist; closest_talkto = it->e; } } } if(closest_talkto != NULL) { draw_quad(true, quad_centered(closest_talkto->pos, V2(TILE_SIZE, TILE_SIZE)), image_dialog_circle, full_region(image_dialog_circle), WHITE); Dialog dialog = { .sentences[0].text = "I'm an old man. fjdslfdasljfla dsfjdsalkf adskjfdlskfkladsjfkljdskljsadlkfjdsaklfjldsajf", .sentences[1].text = "I'm the player. I have lots of things to say. Bla bla bla. All I do is say things. How cringe and terrible", }; float panel_width = 250.0f; float panel_height = 100.0f; float panel_vert_offset = 30.0f; AABB dialog_panel = (AABB){ .upper_left = AddV2(closest_talkto->pos, V2(-panel_width/2.0f, panel_vert_offset+panel_height)), .lower_right = AddV2(closest_talkto->pos, V2(panel_width/2.0f, panel_vert_offset)), }; colorquad(true, quad_aabb(dialog_panel), (Color){1.0f, 1.0f, 1.0f, 0.2f}); float new_line_height = draw_wrapped_text(dialog_panel.upper_left, dialog_panel.lower_right.X - dialog_panel.upper_left.X, dialog.sentences[0].text, 0.5f, WHITE); new_line_height = draw_wrapped_text(V2(dialog_panel.upper_left.X, new_line_height), dialog_panel.lower_right.X - dialog_panel.upper_left.X, dialog.sentences[1].text, 0.5f, GREEN); dbgrect(dialog_panel); } sg_end_pass(); sg_commit(); last_frame_processing_time = stm_sec(stm_diff(stm_now(),time_start_frame)); reset(&scratch); } void cleanup(void) { sg_shutdown(); } void event(const sapp_event *e) { if(e->type == SAPP_EVENTTYPE_KEY_DOWN) { assert(e->key_code < sizeof(keydown)/sizeof(*keydown)); keydown[e->key_code] = true; if(e->key_code == SAPP_KEYCODE_ESCAPE) { sapp_quit(); } #ifdef DEVTOOLS if(e->key_code == SAPP_KEYCODE_T) { mouse_frozen = !mouse_frozen; } #endif } if(e->type == SAPP_EVENTTYPE_KEY_UP) { keydown[e->key_code] = false; } if(e->type == SAPP_EVENTTYPE_MOUSE_MOVE) { bool ignore_movement = false; #ifdef DEVTOOLS if(mouse_frozen) ignore_movement = true; #endif if(!ignore_movement) mouse_pos = V2(e->mouse_x, (float)sapp_height() - e->mouse_y); } } sapp_desc sokol_main(int argc, char* argv[]) { (void)argc; (void)argv; return (sapp_desc){ .init_cb = init, .frame_cb = frame, .cleanup_cb = cleanup, .event_cb = event, .width = 800, .height = 600, //.gl_force_gles2 = true, not sure why this was here in example, look into .window_title = "RPGPT", .win32_console_attach = true, .icon.sokol_default = true, }; }