#define SOKOL_IMPL #if defined(WIN32) || defined(_WIN32) #define SOKOL_D3D11 #endif #include "sokol_app.h" #include "sokol_gfx.h" #include "sokol_time.h" #include "sokol_glue.h" #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #define STB_TRUETYPE_IMPLEMENTATION #include "stb_truetype.h" #include "HandMadeMath.h" #pragma warning(disable : 4996) // fopen is safe. I don't care about fopen_s #include typedef struct AABB { Vec2 upper_left; Vec2 lower_right; } AABB; typedef struct Quad { union { struct { Vec2 ul; // upper left Vec2 ur; // upper right Vec2 lr; // lower right Vec2 ll; // lower left }; Vec2 points[4]; }; } Quad; typedef struct TileInstance { uint16_t kind; } TileInstance; typedef struct AnimatedTile { uint16_t id_from; int num_frames; uint16_t frames[32]; } AnimatedTile; typedef struct TileSet { sg_image *img; AnimatedTile animated[128]; } TileSet; typedef struct AnimatedSprite { sg_image *img; double time_per_frame; int num_frames; Vec2 start; float horizontal_diff_btwn_frames; Vec2 region_size; } AnimatedSprite; #define LEVEL_TILES 60 #define TILE_SIZE 32 // in pixels typedef struct Level { TileInstance tiles[LEVEL_TILES][LEVEL_TILES]; Vec2 spawnpoint; } Level; typedef struct TileCoord { int x; int y; } TileCoord; // no alignment etc because lazy typedef struct Arena { char *data; size_t data_size; size_t cur; } Arena; Arena make(size_t max_size) { return (Arena) { .data = calloc(1, max_size), .data_size = max_size, .cur = 0, }; } void reset(Arena *a) { memset(a->data, 0, a->data_size); a->cur = 0; } char *get(Arena *a, size_t of_size) { assert(a->data != NULL); char *to_return = a->data + a->cur; a->cur += of_size; assert(a->cur < a->data_size); return to_return; } Arena scratch = {0}; char *tprint(const char *format, ...) { va_list argptr; va_start(argptr, format); int size = vsnprintf(NULL, 0, format, argptr) + 1; // for null terminator char *to_return = get(&scratch, size); vsnprintf(to_return, size, format, argptr); va_end(argptr); return to_return; } Vec2 tilecoord_to_world(TileCoord t) { return V2( (float)t.x * (float)TILE_SIZE * 1.0f, -(float)t.y * (float)TILE_SIZE * 1.0f ); } TileCoord world_to_tilecoord(Vec2 w) { // world = V2(tilecoord.x * tile_size, -tilecoord.y * tile_size) // world.x = tilecoord.x * tile_size // world.x / tile_size = tilecoord.x // world.y = -tilecoord.y * tile_size // - world.y / tile_size = tilecoord.y return (TileCoord){ (int)floorf(w.X / TILE_SIZE), (int)floorf(-w.Y / TILE_SIZE) }; } AABB tile_aabb(TileCoord t) { return (AABB) { .upper_left = tilecoord_to_world(t), .lower_right = AddV2(tilecoord_to_world(t), V2(TILE_SIZE, -TILE_SIZE)), }; } Vec2 rotate_counter_clockwise(Vec2 v) { return V2(-v.Y, v.X); } Vec2 aabb_center(AABB aabb) { return MulV2F(AddV2(aabb.upper_left, aabb.lower_right), 0.5f); } AABB centered_aabb(Vec2 at, Vec2 size) { return (AABB){ .upper_left = AddV2(at, V2(-size.X/2.0f, size.Y/2.0f)), .lower_right = AddV2(at, V2( size.X/2.0f, -size.Y/2.0f)), }; } TileInstance get_tile(Level *l, TileCoord t) { bool out_of_bounds = false; out_of_bounds |= t.x < 0; out_of_bounds |= t.x >= LEVEL_TILES; out_of_bounds |= t.y < 0; out_of_bounds |= t.y >= LEVEL_TILES; //assert(!out_of_bounds); if(out_of_bounds) return (TileInstance){0}; return l->tiles[t.y][t.x]; } sg_image load_image(const char *path) { sg_image to_return = {0}; int png_width, png_height, num_channels; const int desired_channels = 4; stbi_uc* pixels = stbi_load( path, &png_width, &png_height, &num_channels, 0); assert(pixels); to_return = sg_make_image(&(sg_image_desc) { .width = png_width, .height = png_height, .pixel_format = SG_PIXELFORMAT_RGBA8, .min_filter = SG_FILTER_NEAREST, .mag_filter = SG_FILTER_NEAREST, .data.subimage[0][0] = { .ptr = pixels, .size = (size_t)(png_width * png_height * 4), } }); stbi_image_free(pixels); return to_return; } #include "quad-sapp.glsl.h" #include "assets.gen.c" AnimatedSprite knight_idle = { .img = &image_knight_idle, .time_per_frame = 0.3, .num_frames = 10, .start = {16.0f, 0.0f}, .horizontal_diff_btwn_frames = 120.0, .region_size = {80.0f, 80.0f}, }; AnimatedSprite knight_running = { .img = &image_knight_run, .time_per_frame = 0.06, .num_frames = 10, .start = {19.0f, 0.0f}, .horizontal_diff_btwn_frames = 120.0, .region_size = {80.0f, 80.0f}, }; sg_image image_font = {0}; const float font_size = 32.0; stbtt_bakedchar cdata[96]; // ASCII 32..126 is 95 glyphs // so can be grep'd and removed #define dbgprint(...) { printf("Debug | %s:%d | ", __FILE__, __LINE__); printf(__VA_ARGS__); } static struct { sg_pass_action pass_action; sg_pipeline pip; sg_bindings bind; } state; Vec2 character_pos = {0}; // world space point void init(void) { scratch = make(1024 * 10); stm_setup(); sg_setup(& (sg_desc){ .context = sapp_sgcontext() }); load_assets(); // player spawnpoint Vec2 spawnpoint_tilecoord = MulV2F(level_level0.spawnpoint, 1.0/TILE_SIZE); character_pos = tilecoord_to_world((TileCoord){(int)spawnpoint_tilecoord.X, (int)spawnpoint_tilecoord.Y}); // load font { FILE* fontFile = fopen("assets/orange kid.ttf", "rb"); fseek(fontFile, 0, SEEK_END); size_t size = ftell(fontFile); /* how long is the file ? */ fseek(fontFile, 0, SEEK_SET); /* reset */ char *fontBuffer = malloc(size); fread(fontBuffer, size, 1, fontFile); fclose(fontFile); unsigned char font_bitmap[512*512] = {0}; stbtt_BakeFontBitmap(fontBuffer, 0, font_size, font_bitmap, 512, 512, 32, 96, cdata); unsigned char *font_bitmap_rgba = malloc(4 * 512 * 512); // stack would be too big if allocated on stack (stack overflow) for(int i = 0; i < 512 * 512; i++) { font_bitmap_rgba[i*4 + 0] = 255; font_bitmap_rgba[i*4 + 1] = 255; font_bitmap_rgba[i*4 + 2] = 255; font_bitmap_rgba[i*4 + 3] = font_bitmap[i]; } image_font = sg_make_image( &(sg_image_desc){ .width = 512, .height = 512, .pixel_format = SG_PIXELFORMAT_RGBA8, .min_filter = SG_FILTER_NEAREST, .mag_filter = SG_FILTER_NEAREST, .data.subimage[0][0] = { .ptr = font_bitmap_rgba, .size = (size_t)(512 * 512 * 4), } } ); free(font_bitmap_rgba); } state.bind.vertex_buffers[0] = sg_make_buffer(&(sg_buffer_desc) { .usage = SG_USAGE_STREAM, //.data = SG_RANGE(vertices), .size = 1024*500, .label = "quad-vertices" }); /* an index buffer with 2 triangles */ uint16_t indices[] = { 0, 1, 2, 0, 2, 3 }; state.bind.index_buffer = sg_make_buffer(&(sg_buffer_desc){ .type = SG_BUFFERTYPE_INDEXBUFFER, .data = SG_RANGE(indices), .label = "quad-indices" }); sg_shader shd = sg_make_shader(quad_program_shader_desc(sg_query_backend())); state.pip = sg_make_pipeline(&(sg_pipeline_desc) { .shader = shd, .index_type = SG_INDEXTYPE_UINT16, .layout = { .attrs = { [ATTR_quad_vs_position].format = SG_VERTEXFORMAT_FLOAT2, [ATTR_quad_vs_texcoord0].format = SG_VERTEXFORMAT_FLOAT2, } }, .colors[0].blend = (sg_blend_state) { // allow transparency .enabled = true, .src_factor_rgb = SG_BLENDFACTOR_SRC_ALPHA, .dst_factor_rgb = SG_BLENDFACTOR_ONE_MINUS_SRC_ALPHA, .op_rgb = SG_BLENDOP_ADD, .src_factor_alpha = SG_BLENDFACTOR_ONE, .dst_factor_alpha = SG_BLENDFACTOR_ONE_MINUS_SRC_ALPHA, .op_alpha = SG_BLENDOP_ADD, }, .label = "quad-pipeline", }); state.pass_action = (sg_pass_action) { //.colors[0] = { .action=SG_ACTION_CLEAR, .value={12.5f/255.0f, 12.5f/255.0f, 12.5f/255.0f, 1.0f } } //.colors[0] = { .action=SG_ACTION_CLEAR, .value={255.5f/255.0f, 255.5f/255.0f, 255.5f/255.0f, 1.0f } } // 0x898989 is the color in tiled .colors[0] = { .action=SG_ACTION_CLEAR, .value={137.0f/255.0f, 137.0f/255.0f, 137.0f/255.0f, 1.0f } } }; } typedef Vec4 Color; #define WHITE (Color){1.0f, 1.0f, 1.0f, 1.0f} #define BLACK (Color){0.0f, 0.0f, 0.0f, 1.0f} #define RED (Color){1.0f, 0.0f, 0.0f, 1.0f} Vec2 screen_size() { return V2((float)sapp_width(), (float)sapp_height()); } typedef struct Camera { Vec2 pos; float scale; } Camera; // everything is in pixels in world space, 43 pixels is approx 1 meter measured from // merchant sprite being 5'6" const float pixels_per_meter = 43.0f; Camera cam = {.scale = 2.0f }; Vec2 cam_offset() { return AddV2(cam.pos, MulV2F(screen_size(), 0.5f)); } // in pixels Vec2 img_size(sg_image img) { sg_image_info info = sg_query_image_info(img); return V2((float)info.width, (float)info.height); } // full region in pixels AABB full_region(sg_image img) { return (AABB) { .upper_left = V2(0.0f, 0.0f), .lower_right = img_size(img), }; } // screen coords are in pixels counting from bottom left as (0,0), Y+ is up Vec2 world_to_screen(Vec2 world) { Vec2 to_return = world; to_return = MulV2F(to_return, cam.scale); to_return = AddV2(to_return, cam_offset()); return to_return; } Vec2 screen_to_world(Vec2 screen) { Vec2 to_return = screen; to_return = SubV2(to_return, cam_offset()); to_return = MulV2F(to_return, 1.0f/cam.scale); return to_return; } Quad quad_at(Vec2 at, Vec2 size) { Quad to_return; to_return.points[0] = V2(0.0, 0.0); to_return.points[1] = V2(size.X, 0.0); to_return.points[2] = V2(size.X, -size.Y); to_return.points[3] = V2(0.0, -size.Y); for(int i = 0; i < 4; i++) { to_return.points[i] = AddV2(to_return.points[i], at); } return to_return; } Quad tile_quad(TileCoord coord) { return quad_at(tilecoord_to_world(coord), V2(TILE_SIZE, TILE_SIZE)); } // out must be of at least length 4 Quad quad_centered(Vec2 at, Vec2 size) { Quad to_return = quad_at(at, size); for(int i = 0; i < 4; i++) { to_return.points[i] = AddV2(to_return.points[i], V2(-size.X*0.5f, size.Y*0.5f)); } return to_return; } Quad quad_aabb(AABB aabb) { Vec2 size_vec = SubV2(aabb.lower_right, aabb.upper_left); // negative in vertical direction assert(size_vec.Y <= 0.0f); assert(size_vec.X >= 0.0f); return (Quad) { .ul = aabb.upper_left, .ur = AddV2(aabb.upper_left, V2(size_vec.X, 0.0f)), .lr = AddV2(aabb.upper_left, size_vec), .ll = AddV2(aabb.upper_left, V2(0.0f, size_vec.Y)), }; } // both segment_a and segment_b must be arrays of length 2 bool segments_overlapping(float *a_segment, float *b_segment) { assert(a_segment[1] >= a_segment[0]); assert(b_segment[1] >= b_segment[0]); float total_length = (a_segment[1] - a_segment[0]) + (b_segment[1] - b_segment[0]); float farthest_to_left = min(a_segment[0], b_segment[0]); float farthest_to_right = max(a_segment[1], b_segment[1]); if (farthest_to_right - farthest_to_left < total_length) { return true; } else { return false; } } bool overlapping(AABB a, AABB b) { // x axis { float a_segment[2] = { a.upper_left.X, a.lower_right.X }; float b_segment[2] = { b.upper_left.X, b.lower_right.X }; if(segments_overlapping(a_segment, b_segment)) { } else { return false; } } // y axis { float a_segment[2] = { a.lower_right.Y, a.upper_left.Y }; float b_segment[2] = { b.lower_right.Y, b.upper_left.Y }; if(segments_overlapping(a_segment, b_segment)) { } else { return false; } } return true; // both segments overlapping } // points must be of length 4, and be in the order: upper left, upper right, lower right, lower left // the points are in pixels in screen space. The image region is in pixel space of the image void draw_quad(bool world_space, Quad quad, sg_image image, AABB image_region, Color tint) { Vec2 *points = quad.points; if(world_space) { for(int i = 0; i < 4; i++) { points[i] = world_to_screen(points[i]); } } AABB cam_aabb = { .upper_left = V2(0.0, screen_size().Y), .lower_right = V2(screen_size().X, 0.0) }; AABB points_bounding_box = { .upper_left = V2(INFINITY, -INFINITY), .lower_right = V2(-INFINITY, INFINITY) }; for(int i = 0; i < 4; i++) { points_bounding_box.upper_left.X = min(points_bounding_box.upper_left.X, points[i].X); points_bounding_box.upper_left.Y = max(points_bounding_box.upper_left.Y, points[i].Y); points_bounding_box.lower_right.X = max(points_bounding_box.lower_right.X, points[i].X); points_bounding_box.lower_right.Y = min(points_bounding_box.lower_right.Y, points[i].Y); } if(!overlapping(cam_aabb, points_bounding_box)) { return; // cull out of screen quads } float new_vertices[ (2 + 2)*4 ]; Vec2 region_size = SubV2(image_region.lower_right, image_region.upper_left); assert(region_size.X > 0.0); assert(region_size.Y > 0.0); Vec2 tex_coords[4] = { AddV2(image_region.upper_left, V2(0.0, 0.0)), AddV2(image_region.upper_left, V2(region_size.X, 0.0)), AddV2(image_region.upper_left, V2(region_size.X, region_size.Y)), AddV2(image_region.upper_left, V2(0.0, region_size.Y)), }; // convert to uv space sg_image_info info = sg_query_image_info(image); for(int i = 0; i < 4; i++) { tex_coords[i] = DivV2(tex_coords[i], V2((float)info.width, (float)info.height)); } for(int i = 0; i < 4; i++) { Vec2 zero_to_one = DivV2(points[i], screen_size()); Vec2 in_clip_space = SubV2(MulV2F(zero_to_one, 2.0), V2(1.0, 1.0)); new_vertices[i*4] = in_clip_space.X; new_vertices[i*4 + 1] = in_clip_space.Y; new_vertices[i*4 + 2] = tex_coords[i].X; new_vertices[i*4 + 3] = tex_coords[i].Y; } state.bind.vertex_buffer_offsets[0] = sg_append_buffer(state.bind.vertex_buffers[0], &SG_RANGE(new_vertices)); quad_fs_params_t params = {0}; params.tint[0] = tint.R; params.tint[1] = tint.G; params.tint[2] = tint.B; params.tint[3] = tint.A; params.upper_left[0] = image_region.upper_left.X; params.upper_left[1] = image_region.upper_left.Y; params.lower_right[0] = image_region.lower_right.X; params.lower_right[1] = image_region.lower_right.Y; state.bind.fs_images[SLOT_quad_tex] = image; sg_apply_bindings(&state.bind); sg_apply_uniforms(SG_SHADERSTAGE_FS, SLOT_quad_fs_params, &SG_RANGE(params)); sg_draw(0, 6, 1); } void swap(Vec2 *p1, Vec2 *p2) { Vec2 tmp = *p1; *p1 = *p2; *p2 = tmp; } void draw_animated_sprite(AnimatedSprite *s, double time, bool flipped, Vec2 pos, Color tint) { sg_image spritesheet_img = *s->img; int index = (int)floor(time/s->time_per_frame) % s->num_frames; Quad q = quad_centered(pos, s->region_size); if(flipped) { swap(&q.points[0], &q.points[1]); swap(&q.points[3], &q.points[2]); } AABB region; region.upper_left = AddV2(s->start, V2(index * s->horizontal_diff_btwn_frames, 0.0f)); region.lower_right = V2(region.upper_left.X + (float)s->region_size.X, (float)s->region_size.Y); draw_quad(true, q, spritesheet_img, region, tint); } Vec2 tile_id_to_coord(sg_image tileset_image, Vec2 tile_size, uint16_t tile_id) { int tiles_per_row = (int)(img_size(tileset_image).X / tile_size.X); int tile_index = tile_id - 1; int tile_image_row = tile_index / tiles_per_row; int tile_image_col = tile_index - tile_image_row*tiles_per_row; Vec2 tile_image_coord = V2((float)tile_image_col * tile_size.X, (float)tile_image_row*tile_size.Y); return tile_image_coord; } // returns bounds. To measure text you can set dry run to true and get the bounds AABB draw_text(bool world_space, bool dry_run, const char *text, Vec2 pos, Color color) { size_t text_len = strlen(text); AABB bounds = {0}; float y = 0.0; float x = 0.0; for(int i = 0; i < text_len; i++) { stbtt_aligned_quad q; float old_y = y; stbtt_GetBakedQuad(cdata, 512, 512, text[i]-32, &x, &y, &q, 1); float difference = y - old_y; y = old_y + difference; Vec2 size = V2(q.x1 - q.x0, q.y1 - q.y0); if(text[i] == '\n') { #ifdef DEVTOOLS y += font_size*0.75f; // arbitrary, only debug text has newlines x = 0.0; #else assert(false); #endif } if(size.Y > 0.0 && size.X > 0.0) { // spaces (and maybe other characters) produce quads of size 0 Quad to_draw = { .points = { AddV2(V2(q.x0, -q.y0), V2(0.0f, 0.0f)), AddV2(V2(q.x0, -q.y0), V2(size.X, 0.0f)), AddV2(V2(q.x0, -q.y0), V2(size.X, -size.Y)), AddV2(V2(q.x0, -q.y0), V2(0.0f, -size.Y)), }, }; AABB font_atlas_region = (AABB) { .upper_left = V2(q.s0, q.t0), .lower_right = V2(q.s1, q.t1), }; font_atlas_region.upper_left.X *= img_size(image_font).X; font_atlas_region.lower_right.X *= img_size(image_font).X; font_atlas_region.upper_left.Y *= img_size(image_font).Y; font_atlas_region.lower_right.Y *= img_size(image_font).Y; for(int i = 0; i < 4; i++) { bounds.upper_left.X = min(bounds.upper_left.X, to_draw.points[i].X); bounds.upper_left.Y = max(bounds.upper_left.Y, to_draw.points[i].Y); bounds.lower_right.X = max(bounds.lower_right.X, to_draw.points[i].X); bounds.lower_right.Y = min(bounds.lower_right.Y, to_draw.points[i].Y); } for(int i = 0; i < 4; i++) { to_draw.points[i] = AddV2(to_draw.points[i], pos); } if(!dry_run) { draw_quad(world_space, to_draw, image_font, font_atlas_region, color); } } } bounds.upper_left = AddV2(bounds.upper_left, pos); bounds.lower_right = AddV2(bounds.lower_right, pos); return bounds; } void colorquad(bool world_space, Quad q, Color col) { draw_quad(world_space, q, image_white_square, full_region(image_white_square), col); } void dbgsquare(Vec2 at) { colorquad(true, quad_centered(at, V2(10.0, 10.0)), RED); } // in world coordinates void line(Vec2 from, Vec2 to, float line_width, Color color) { Vec2 normal = rotate_counter_clockwise(NormV2(SubV2(to, from))); Quad line_quad = { .points = { AddV2(from, MulV2F(normal, line_width)), // upper left AddV2(to, MulV2F(normal, line_width)), // upper right AddV2(to, MulV2F(normal, -line_width)), // lower right AddV2(from, MulV2F(normal, -line_width)), // lower left } }; colorquad(true, line_quad, color); } void dbgline(Vec2 from, Vec2 to) { line(from, to, 2.0f, RED); } // in world space void dbgrect(AABB rect) { const float line_width = 0.5; const Color col = RED; Quad q = quad_aabb(rect); line(q.ul, q.ur, line_width, col); line(q.ur, q.lr, line_width, col); line(q.lr, q.ll, line_width, col); line(q.ll, q.ul, line_width, col); } double time = 0.0; double last_frame_processing_time = 0.0; uint64_t last_frame_time; Vec2 mouse_pos = {0}; // in screen space bool character_facing_left = false; bool keydown[SAPP_KEYCODE_MENU] = {0}; #ifdef DEVTOOLS bool mouse_frozen = false; #endif void frame(void) { uint64_t time_start_frame = stm_now(); // time double dt_double = 0.0; { dt_double = stm_sec(stm_diff(stm_now(), last_frame_time)); dt_double = min(dt_double, 5.0 / 60.0); // clamp dt at maximum 5 frames, avoid super huge dt time += dt_double; last_frame_time = stm_now(); } float dt = (float)dt_double; Vec2 movement = V2( (float)keydown[SAPP_KEYCODE_D] - (float)keydown[SAPP_KEYCODE_A], (float)keydown[SAPP_KEYCODE_W] - (float)keydown[SAPP_KEYCODE_S] ); if(LenV2(movement) > 1.0) { movement = NormV2(movement); } sg_begin_default_pass(&state.pass_action, sapp_width(), sapp_height()); sg_apply_pipeline(state.pip); // tilemap #if 1 Level * cur_level = &level_level0; for(int row = 0; row < LEVEL_TILES; row++) { for(int col = 0; col < LEVEL_TILES; col++) { TileCoord cur_coord = { col, row }; TileInstance cur = get_tile(cur_level, cur_coord); TileSet tileset = tileset_ruins_animated; if(cur.kind != 0) { Vec2 tile_size = V2(TILE_SIZE, TILE_SIZE); sg_image tileset_image = *tileset.img; Vec2 tile_image_coord = tile_id_to_coord(tileset_image, tile_size, cur.kind); AnimatedTile *anim = NULL; for(int i = 0; i < sizeof(tileset.animated)/sizeof(*tileset.animated); i++) { if(tileset.animated[i].id_from == cur.kind-1) { anim = &tileset.animated[i]; } } if(anim) { double time_per_frame = 0.1; int frame_index = (int)(time/time_per_frame) % anim->num_frames; tile_image_coord = tile_id_to_coord(tileset_image, tile_size, anim->frames[frame_index]+1); } AABB region; region.upper_left = tile_image_coord; region.lower_right = AddV2(region.upper_left, tile_size); draw_quad(true, tile_quad(cur_coord), tileset_image, region, WHITE); } } } #endif Vec2 new_pos = AddV2(character_pos, MulV2F(movement, dt * pixels_per_meter * 4.0f)); Vec2 character_aabb_size = { TILE_SIZE, TILE_SIZE }; AABB at_new = centered_aabb(new_pos, character_aabb_size); Vec2 at_new_size_vector = SubV2(at_new.lower_right, at_new.upper_left); Vec2 points_to_check[] = { AddV2(at_new.upper_left, V2(0.0, 0.0)), AddV2(at_new.upper_left, V2(at_new_size_vector.X, 0.0)), AddV2(at_new.upper_left, V2(at_new_size_vector.X, at_new_size_vector.Y)), AddV2(at_new.upper_left, V2(0.0, at_new_size_vector.Y)), }; //dbgsquare(character_pos); //dbgsquare(at_new.upper_left); //dbgsquare(at_new.lower_right); for(int i = 0; i < sizeof(points_to_check)/sizeof(*points_to_check); i++) { Vec2 *it = &points_to_check[i]; TileCoord to_check = world_to_tilecoord(*it); uint16_t tile_id = get_tile(&level_level0, to_check).kind; if(tile_id == 53 || tile_id == 0 || tile_id == 367 || tile_id == 317 || tile_id == 313 || tile_id == 366) { dbgsquare(tilecoord_to_world(to_check)); AABB to_depenetrate_from = tile_aabb(to_check); while(overlapping(to_depenetrate_from, at_new)) { //while(false) { //dbgsquare(to_depenetrate_from.upper_left); //dbgsquare(to_depenetrate_from.lower_right); const float move_dist = 0.05f; Vec2 to_player = NormV2(SubV2(aabb_center(at_new), aabb_center(to_depenetrate_from))); Vec2 compass_dirs[4] = { V2( 1.0, 0.0), V2(-1.0, 0.0), V2(0.0, 1.0), V2(0.0, -1.0), }; int closest_index = -1; float closest_dot = -99999999.0f; for(int i = 0; i < 4; i++) { float dot = DotV2(compass_dirs[i], to_player); if(dot > closest_dot) { closest_index = i; closest_dot = dot; } } Vec2 move_dir = compass_dirs[closest_index]; Vec2 move = MulV2F(move_dir, move_dist); at_new.upper_left = AddV2(at_new.upper_left,move); at_new.lower_right = AddV2(at_new.lower_right,move); } } } } character_pos = aabb_center(at_new); cam.pos = LerpV2(cam.pos, dt*8.0f, MulV2F(character_pos, -1.0f * cam.scale)); #ifdef DEVTOOLS dbgsquare(screen_to_world(mouse_pos)); // tile coord { TileCoord hovering = world_to_tilecoord(screen_to_world(mouse_pos)); Vec2 points[4] ={0}; AABB q = tile_aabb(hovering); dbgrect(q); draw_text(false, false, tprint("%d", get_tile(&level_level0, hovering).kind), world_to_screen(tilecoord_to_world(hovering)), BLACK); } // line test { dbgline(character_pos, screen_to_world(mouse_pos)); } // debug draw font image { draw_quad(true, quad_centered(V2(0.0, 0.0), V2(250.0, 250.0)), image_font,full_region(image_font), WHITE); } // statistics { Vec2 pos = V2(0.0, screen_size().Y); char *stats = tprint("Frametime: %.1f ms\nProcessing: %.1f ms", dt*1000.0, last_frame_processing_time*1000.0); AABB bounds = draw_text(false, true, stats, pos, BLACK); pos.Y -= bounds.upper_left.Y - screen_size().Y; bounds = draw_text(false, true, stats, pos, BLACK); // background panel colorquad(false, quad_aabb(bounds), (Color){1.0, 1.0, 1.0, 0.3f}); draw_text(false, false, stats, pos, BLACK); } // text test render #if 0 const char *text = "great idea\nother idea"; // measure text Vec2 pos = character_pos; { AABB bounds = draw_text(true, true, text, strlen(text), pos, WHITE); colorbox(true, bounds.upper_left, bounds.lower_right, (Color){1.0,0.0,0.0,0.5}); } // draw text { draw_text(true, false, text, strlen(text), pos, WHITE); } #endif #endif // devtools if(fabsf(movement.X) > 0.01f) character_facing_left = movement.X < 0.0f; Vec2 character_sprite_pos = AddV2(character_pos, V2(0.0, 20.0f)); if(LenV2(movement) > 0.01) { draw_animated_sprite(&knight_running, time, character_facing_left, character_sprite_pos, WHITE); } else { draw_animated_sprite(&knight_idle, time, character_facing_left, character_sprite_pos, WHITE); } sg_end_pass(); sg_commit(); last_frame_processing_time = stm_sec(stm_diff(stm_now(),time_start_frame)); reset(&scratch); } void cleanup(void) { sg_shutdown(); } void event(const sapp_event *e) { if(e->type == SAPP_EVENTTYPE_KEY_DOWN) { assert(e->key_code < sizeof(keydown)/sizeof(*keydown)); keydown[e->key_code] = true; if(e->key_code == SAPP_KEYCODE_ESCAPE) { sapp_quit(); } #ifdef DEVTOOLS if(e->key_code == SAPP_KEYCODE_T) { mouse_frozen = !mouse_frozen; } #endif } if(e->type == SAPP_EVENTTYPE_KEY_UP) { keydown[e->key_code] = false; } if(e->type == SAPP_EVENTTYPE_MOUSE_MOVE) { bool ignore_movement = false; #ifdef DEVTOOLS if(mouse_frozen) ignore_movement = true; #endif if(!ignore_movement) mouse_pos = V2(e->mouse_x, (float)sapp_height() - e->mouse_y); } } sapp_desc sokol_main(int argc, char* argv[]) { (void)argc; (void)argv; return (sapp_desc){ .init_cb = init, .frame_cb = frame, .cleanup_cb = cleanup, .event_cb = event, .width = 800, .height = 600, //.gl_force_gles2 = true, not sure why this was here in example, look into .window_title = "RPGPT", .win32_console_attach = true, .icon.sokol_default = true, }; }