3791 lines
89 KiB
C
3791 lines
89 KiB
C
/*
|
|
HandmadeMath.h v2.0.0
|
|
|
|
This is a single header file with a bunch of useful types and functions for
|
|
games and graphics. Consider it a lightweight alternative to GLM that works
|
|
both C and C++.
|
|
|
|
=============================================================================
|
|
|
|
CONFIG
|
|
|
|
By default, all angles in Handmade Math are specified in radians. However, it
|
|
can be configured to use degrees or turns instead. Use one of the following
|
|
defines to specify the default unit for angles:
|
|
|
|
#define HANDMADE_MATH_USE_RADIANS
|
|
#define HANDMADE_MATH_USE_DEGREES
|
|
#define HANDMADE_MATH_USE_TURNS
|
|
|
|
Regardless of the default angle, you can use the following functions to
|
|
specify an angle in a particular unit:
|
|
|
|
AngleRad(radians)
|
|
AngleDeg(degrees)
|
|
AngleTurn(turns)
|
|
|
|
-----------------------------------------------------------------------------
|
|
|
|
Handmade Math ships with SSE (SIMD) implementations of several common
|
|
operations. To disable the use of SSE intrinsics, you must
|
|
define HANDMADE_MATH_NO_SSE before including this file:
|
|
|
|
#define HANDMADE_MATH_NO_SSE
|
|
#include "HandmadeMath.h"
|
|
|
|
-----------------------------------------------------------------------------
|
|
|
|
To use Handmade Math without the C runtime library, you must provide your own
|
|
implementations of basic math functions. Otherwise, HandmadeMath.h will use
|
|
the runtime library implementation of these functions.
|
|
|
|
Define HANDMADE_MATH_PROVIDE_MATH_FUNCTIONS and provide your own
|
|
implementations of SINF, COSF, TANF, ACOSF, and SQRTF
|
|
before including HandmadeMath.h, like so:
|
|
|
|
#define HANDMADE_MATH_PROVIDE_MATH_FUNCTIONS
|
|
#define SINF MySinF
|
|
#define COSF MyCosF
|
|
#define TANF MyTanF
|
|
#define ACOSF MyACosF
|
|
#define SQRTF MySqrtF
|
|
#include "HandmadeMath.h"
|
|
|
|
By default, it is assumed that your math functions take radians. To use
|
|
different units, you must define ANGLE_USER_TO_INTERNAL and
|
|
ANGLE_INTERNAL_TO_USER. For example, if you want to use degrees in your
|
|
code but your math functions use turns:
|
|
|
|
#define ANGLE_USER_TO_INTERNAL(a) ((a)*DegToTurn)
|
|
#define ANGLE_INTERNAL_TO_USER(a) ((a)*TurnToDeg)
|
|
|
|
=============================================================================
|
|
|
|
LICENSE
|
|
|
|
This software is in the public domain. Where that dedication is not
|
|
recognized, you are granted a perpetual, irrevocable license to copy,
|
|
distribute, and modify this file as you see fit.
|
|
|
|
=============================================================================
|
|
|
|
CREDITS
|
|
|
|
Originally written by Zakary Strange.
|
|
|
|
Functionality:
|
|
Zakary Strange (strangezak@protonmail.com && @strangezak)
|
|
Matt Mascarenhas (@miblo_)
|
|
Aleph
|
|
FieryDrake (@fierydrake)
|
|
Gingerbill (@TheGingerBill)
|
|
Ben Visness (@bvisness)
|
|
Trinton Bullard (@Peliex_Dev)
|
|
@AntonDan
|
|
Logan Forman (@dev_dwarf)
|
|
|
|
Fixes:
|
|
Jeroen van Rijn (@J_vanRijn)
|
|
Kiljacken (@Kiljacken)
|
|
Insofaras (@insofaras)
|
|
Daniel Gibson (@DanielGibson)
|
|
*/
|
|
|
|
#ifndef HANDMADE_MATH_H
|
|
#define HANDMADE_MATH_H
|
|
|
|
// Dummy macros for when test framework is not present.
|
|
#ifndef COVERAGE
|
|
# define COVERAGE(a, b)
|
|
#endif
|
|
|
|
#ifndef ASSERT_COVERED
|
|
# define ASSERT_COVERED(a)
|
|
#endif
|
|
|
|
/* let's figure out if SSE is really available (unless disabled anyway)
|
|
(it isn't on non-x86/x86_64 platforms or even x86 without explicit SSE support)
|
|
=> only use "#ifdef HANDMADE_MATH__USE_SSE" to check for SSE support below this block! */
|
|
#ifndef HANDMADE_MATH_NO_SSE
|
|
# ifdef _MSC_VER /* MSVC supports SSE in amd64 mode or _M_IX86_FP >= 1 (2 means SSE2) */
|
|
# if defined(_M_AMD64) || ( defined(_M_IX86_FP) && _M_IX86_FP >= 1 )
|
|
# define HANDMADE_MATH__USE_SSE 1
|
|
# endif
|
|
# else /* not MSVC, probably GCC, clang, icc or something that doesn't support SSE anyway */
|
|
# ifdef __SSE__ /* they #define __SSE__ if it's supported */
|
|
# define HANDMADE_MATH__USE_SSE 1
|
|
# endif /* __SSE__ */
|
|
# endif /* not _MSC_VER */
|
|
#endif /* #ifndef HANDMADE_MATH_NO_SSE */
|
|
|
|
#if (!defined(__cplusplus) && defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L)
|
|
# define HANDMADE_MATH__USE_C11_GENERICS 1
|
|
#endif
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
# include <xmmintrin.h>
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable:4201)
|
|
#endif
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
# pragma GCC diagnostic push
|
|
# pragma GCC diagnostic ignored "-Wfloat-equal"
|
|
# if (defined(__GNUC__) && (__GNUC__ == 4 && __GNUC_MINOR__ < 8)) || defined(__clang__)
|
|
# pragma GCC diagnostic ignored "-Wmissing-braces"
|
|
# endif
|
|
# ifdef __clang__
|
|
# pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
|
|
# pragma GCC diagnostic ignored "-Wmissing-field-initializers"
|
|
# endif
|
|
#endif
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
# define DEPRECATED(msg) __attribute__((deprecated(msg)))
|
|
#elif defined(_MSC_VER)
|
|
# define DEPRECATED(msg) __declspec(deprecated(msg))
|
|
#else
|
|
# define DEPRECATED(msg)
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
extern "C"
|
|
{
|
|
#endif
|
|
|
|
#if !defined(HANDMADE_MATH_USE_DEGREES) \
|
|
&& !defined(HANDMADE_MATH_USE_TURNS) \
|
|
&& !defined(HANDMADE_MATH_USE_RADIANS)
|
|
# define HANDMADE_MATH_USE_RADIANS
|
|
#endif
|
|
|
|
#define PI 3.14159265358979323846
|
|
#define PI32 3.14159265359f
|
|
#define DEG180 180.0
|
|
#define DEG18032 180.0f
|
|
#define TURNHALF 0.5
|
|
#define TURNHALF32 0.5f
|
|
#define RadToDeg ((float)(DEG180/PI))
|
|
#define RadToTurn ((float)(TURNHALF/PI))
|
|
#define DegToRad ((float)(PI/DEG180))
|
|
#define DegToTurn ((float)(TURNHALF/DEG180))
|
|
#define TurnToRad ((float)(PI/TURNHALF))
|
|
#define TurnToDeg ((float)(DEG180/TURNHALF))
|
|
|
|
#if defined(HANDMADE_MATH_USE_RADIANS)
|
|
# define AngleRad(a) (a)
|
|
# define AngleDeg(a) ((a)*DegToRad)
|
|
# define AngleTurn(a) ((a)*TurnToRad)
|
|
#elif defined(HANDMADE_MATH_USE_DEGREES)
|
|
# define AngleRad(a) ((a)*RadToDeg)
|
|
# define AngleDeg(a) (a)
|
|
# define AngleTurn(a) ((a)*TurnToDeg)
|
|
#elif defined(HANDMADE_MATH_USE_TURNS)
|
|
# define AngleRad(a) ((a)*RadToTurn)
|
|
# define AngleDeg(a) ((a)*DegToTurn)
|
|
# define AngleTurn(a) (a)
|
|
#endif
|
|
|
|
#if !defined(HANDMADE_MATH_PROVIDE_MATH_FUNCTIONS)
|
|
# include <math.h>
|
|
# define SINF sinf
|
|
# define COSF cosf
|
|
# define TANF tanf
|
|
# define SQRTF sqrtf
|
|
# define ACOSF acosf
|
|
#endif
|
|
|
|
#if !defined(ANGLE_USER_TO_INTERNAL)
|
|
# define ANGLE_USER_TO_INTERNAL(a) (ToRad(a))
|
|
#endif
|
|
|
|
#if !defined(ANGLE_INTERNAL_TO_USER)
|
|
# if defined(HANDMADE_MATH_USE_RADIANS)
|
|
# define ANGLE_INTERNAL_TO_USER(a) (a)
|
|
# elif defined(HANDMADE_MATH_USE_DEGREES)
|
|
# define ANGLE_INTERNAL_TO_USER(a) ((a)*RadToDeg)
|
|
# elif defined(HANDMADE_MATH_USE_TURNS)
|
|
# define ANGLE_INTERNAL_TO_USER(a) ((a)*RadToTurn)
|
|
# endif
|
|
#endif
|
|
|
|
#define MIN(a, b) ((a) > (b) ? (b) : (a))
|
|
#define MAX(a, b) ((a) < (b) ? (b) : (a))
|
|
#define ABS(a) ((a) > 0 ? (a) : -(a))
|
|
#define MOD(a, m) (((a) % (m)) >= 0 ? ((a) % (m)) : (((a) % (m)) + (m)))
|
|
#define SQUARE(x) ((x) * (x))
|
|
|
|
typedef union Vec2
|
|
{
|
|
struct
|
|
{
|
|
float X, Y;
|
|
};
|
|
|
|
// fuck off
|
|
struct
|
|
{
|
|
float x, y;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float U, V;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float Left, Right;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float Width, Height;
|
|
};
|
|
|
|
float Elements[2];
|
|
|
|
#ifdef __cplusplus
|
|
inline float &operator[](const int &Index)
|
|
{
|
|
return Elements[Index];
|
|
}
|
|
#endif
|
|
} Vec2;
|
|
|
|
typedef union Vec3
|
|
{
|
|
struct
|
|
{
|
|
float X, Y, Z;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float U, V, W;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float R, G, B;
|
|
};
|
|
|
|
struct
|
|
{
|
|
Vec2 XY;
|
|
float _Ignored0;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float _Ignored1;
|
|
Vec2 YZ;
|
|
};
|
|
|
|
struct
|
|
{
|
|
Vec2 UV;
|
|
float _Ignored2;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float _Ignored3;
|
|
Vec2 VW;
|
|
};
|
|
|
|
float Elements[3];
|
|
|
|
#ifdef __cplusplus
|
|
inline float &operator[](const int &Index)
|
|
{
|
|
return Elements[Index];
|
|
}
|
|
#endif
|
|
} Vec3;
|
|
|
|
typedef union Vec4
|
|
{
|
|
struct
|
|
{
|
|
union
|
|
{
|
|
Vec3 XYZ;
|
|
struct
|
|
{
|
|
float X, Y, Z;
|
|
};
|
|
};
|
|
|
|
float W;
|
|
};
|
|
struct
|
|
{
|
|
union
|
|
{
|
|
Vec3 RGB;
|
|
struct
|
|
{
|
|
float R, G, B;
|
|
};
|
|
};
|
|
|
|
float A;
|
|
};
|
|
|
|
struct
|
|
{
|
|
Vec2 XY;
|
|
float _Ignored0;
|
|
float _Ignored1;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float _Ignored2;
|
|
Vec2 YZ;
|
|
float _Ignored3;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float _Ignored4;
|
|
float _Ignored5;
|
|
Vec2 ZW;
|
|
};
|
|
|
|
float Elements[4];
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSE;
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
inline float &operator[](const int &Index)
|
|
{
|
|
return Elements[Index];
|
|
}
|
|
#endif
|
|
} Vec4;
|
|
|
|
typedef union Mat2
|
|
{
|
|
float Elements[2][2];
|
|
Vec2 Columns[2];
|
|
|
|
#ifdef __cplusplus
|
|
inline Vec2 &operator[](const int &Index)
|
|
{
|
|
return Columns[Index];
|
|
}
|
|
#endif
|
|
} Mat2;
|
|
|
|
typedef union Mat3
|
|
{
|
|
float Elements[3][3];
|
|
Vec3 Columns[3];
|
|
|
|
#ifdef __cplusplus
|
|
inline Vec3 &operator[](const int &Index)
|
|
{
|
|
return Columns[Index];
|
|
}
|
|
#endif
|
|
} Mat3;
|
|
|
|
typedef union Mat4
|
|
{
|
|
float Elements[4][4];
|
|
Vec4 Columns[4];
|
|
|
|
#ifdef __cplusplus
|
|
inline Vec4 &operator[](const int &Index)
|
|
{
|
|
return Columns[Index];
|
|
}
|
|
#endif
|
|
} Mat4;
|
|
|
|
typedef union Quat
|
|
{
|
|
struct
|
|
{
|
|
union
|
|
{
|
|
Vec3 XYZ;
|
|
struct
|
|
{
|
|
float X, Y, Z;
|
|
};
|
|
};
|
|
|
|
float W;
|
|
};
|
|
|
|
float Elements[4];
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSE;
|
|
#endif
|
|
} Quat;
|
|
|
|
typedef signed int Bool;
|
|
|
|
/*
|
|
* Angle unit conversion functions
|
|
*/
|
|
static inline float ToRad(float Angle)
|
|
{
|
|
#if defined(HANDMADE_MATH_USE_RADIANS)
|
|
float Result = Angle;
|
|
#elif defined(HANDMADE_MATH_USE_DEGREES)
|
|
float Result = Angle * DegToRad;
|
|
#elif defined(HANDMADE_MATH_USE_TURNS)
|
|
float Result = Angle * TurnToRad;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline float ToDeg(float Angle)
|
|
{
|
|
#if defined(HANDMADE_MATH_USE_RADIANS)
|
|
float Result = Angle * RadToDeg;
|
|
#elif defined(HANDMADE_MATH_USE_DEGREES)
|
|
float Result = Angle;
|
|
#elif defined(HANDMADE_MATH_USE_TURNS)
|
|
float Result = Angle * TurnToDeg;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline float ToTurn(float Angle)
|
|
{
|
|
#if defined(HANDMADE_MATH_USE_RADIANS)
|
|
float Result = Angle * RadToTurn;
|
|
#elif defined(HANDMADE_MATH_USE_DEGREES)
|
|
float Result = Angle * DegToTurn;
|
|
#elif defined(HANDMADE_MATH_USE_TURNS)
|
|
float Result = Angle;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
/*
|
|
* Floating-point math functions
|
|
*/
|
|
|
|
COVERAGE(SinF, 1)
|
|
static inline float SinF(float Angle)
|
|
{
|
|
ASSERT_COVERED(SinF);
|
|
return SINF(ANGLE_USER_TO_INTERNAL(Angle));
|
|
}
|
|
|
|
COVERAGE(CosF, 1)
|
|
static inline float CosF(float Angle)
|
|
{
|
|
ASSERT_COVERED(CosF);
|
|
return COSF(ANGLE_USER_TO_INTERNAL(Angle));
|
|
}
|
|
|
|
COVERAGE(TanF, 1)
|
|
static inline float TanF(float Angle)
|
|
{
|
|
ASSERT_COVERED(TanF);
|
|
return TANF(ANGLE_USER_TO_INTERNAL(Angle));
|
|
}
|
|
|
|
COVERAGE(ACosF, 1)
|
|
static inline float ACosF(float Arg)
|
|
{
|
|
ASSERT_COVERED(ACosF);
|
|
return ANGLE_INTERNAL_TO_USER(ACOSF(Arg));
|
|
}
|
|
|
|
COVERAGE(SqrtF, 1)
|
|
static inline float SqrtF(float Float)
|
|
{
|
|
ASSERT_COVERED(SqrtF);
|
|
|
|
float Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 In = _mm_set_ss(Float);
|
|
__m128 Out = _mm_sqrt_ss(In);
|
|
Result = _mm_cvtss_f32(Out);
|
|
#else
|
|
Result = SQRTF(Float);
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(InvSqrtF, 1)
|
|
static inline float InvSqrtF(float Float)
|
|
{
|
|
ASSERT_COVERED(InvSqrtF);
|
|
|
|
float Result;
|
|
|
|
Result = 1.0f/SqrtF(Float);
|
|
|
|
return Result;
|
|
}
|
|
|
|
|
|
/*
|
|
* Utility functions
|
|
*/
|
|
|
|
COVERAGE(Lerp, 1)
|
|
static inline float Lerp(float A, float Time, float B)
|
|
{
|
|
ASSERT_COVERED(Lerp);
|
|
return (1.0f - Time) * A + Time * B;
|
|
}
|
|
|
|
COVERAGE(Clamp, 1)
|
|
static inline float Clamp(float Min, float Value, float Max)
|
|
{
|
|
ASSERT_COVERED(Clamp);
|
|
|
|
float Result = Value;
|
|
|
|
if (Result < Min)
|
|
{
|
|
Result = Min;
|
|
}
|
|
|
|
if (Result > Max)
|
|
{
|
|
Result = Max;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
|
|
/*
|
|
* Vector initialization
|
|
*/
|
|
|
|
COVERAGE(V2, 1)
|
|
static inline Vec2 V2(float X, float Y)
|
|
{
|
|
ASSERT_COVERED(V2);
|
|
|
|
Vec2 Result;
|
|
Result.X = X;
|
|
Result.Y = Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(V3, 1)
|
|
static inline Vec3 V3(float X, float Y, float Z)
|
|
{
|
|
ASSERT_COVERED(V3);
|
|
|
|
Vec3 Result;
|
|
Result.X = X;
|
|
Result.Y = Y;
|
|
Result.Z = Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(V4, 1)
|
|
static inline Vec4 V4(float X, float Y, float Z, float W)
|
|
{
|
|
ASSERT_COVERED(V4);
|
|
|
|
Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_setr_ps(X, Y, Z, W);
|
|
#else
|
|
Result.X = X;
|
|
Result.Y = Y;
|
|
Result.Z = Z;
|
|
Result.W = W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(V4V, 1)
|
|
static inline Vec4 V4V(Vec3 Vector, float W)
|
|
{
|
|
ASSERT_COVERED(V4V);
|
|
|
|
Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_setr_ps(Vector.X, Vector.Y, Vector.Z, W);
|
|
#else
|
|
Result.XYZ = Vector;
|
|
Result.W = W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
|
|
/*
|
|
* Binary vector operations
|
|
*/
|
|
|
|
COVERAGE(AddV2, 1)
|
|
static inline Vec2 AddV2(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(AddV2);
|
|
|
|
Vec2 Result;
|
|
Result.X = Left.X + Right.X;
|
|
Result.Y = Left.Y + Right.Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(AddV3, 1)
|
|
static inline Vec3 AddV3(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(AddV3);
|
|
|
|
Vec3 Result;
|
|
Result.X = Left.X + Right.X;
|
|
Result.Y = Left.Y + Right.Y;
|
|
Result.Z = Left.Z + Right.Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(AddV4, 1)
|
|
static inline Vec4 AddV4(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(AddV4);
|
|
|
|
Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_add_ps(Left.SSE, Right.SSE);
|
|
#else
|
|
Result.X = Left.X + Right.X;
|
|
Result.Y = Left.Y + Right.Y;
|
|
Result.Z = Left.Z + Right.Z;
|
|
Result.W = Left.W + Right.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(SubV2, 1)
|
|
static inline Vec2 SubV2(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(SubV2);
|
|
|
|
Vec2 Result;
|
|
Result.X = Left.X - Right.X;
|
|
Result.Y = Left.Y - Right.Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(SubV3, 1)
|
|
static inline Vec3 SubV3(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(SubV3);
|
|
|
|
Vec3 Result;
|
|
Result.X = Left.X - Right.X;
|
|
Result.Y = Left.Y - Right.Y;
|
|
Result.Z = Left.Z - Right.Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(SubV4, 1)
|
|
static inline Vec4 SubV4(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(SubV4);
|
|
|
|
Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_sub_ps(Left.SSE, Right.SSE);
|
|
#else
|
|
Result.X = Left.X - Right.X;
|
|
Result.Y = Left.Y - Right.Y;
|
|
Result.Z = Left.Z - Right.Z;
|
|
Result.W = Left.W - Right.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulV2, 1)
|
|
static inline Vec2 MulV2(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(MulV2);
|
|
|
|
Vec2 Result;
|
|
Result.X = Left.X * Right.X;
|
|
Result.Y = Left.Y * Right.Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulV2F, 1)
|
|
static inline Vec2 MulV2F(Vec2 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulV2F);
|
|
|
|
Vec2 Result;
|
|
Result.X = Left.X * Right;
|
|
Result.Y = Left.Y * Right;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulV3, 1)
|
|
static inline Vec3 MulV3(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(MulV3);
|
|
|
|
Vec3 Result;
|
|
Result.X = Left.X * Right.X;
|
|
Result.Y = Left.Y * Right.Y;
|
|
Result.Z = Left.Z * Right.Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulV3F, 1)
|
|
static inline Vec3 MulV3F(Vec3 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulV3F);
|
|
|
|
Vec3 Result;
|
|
Result.X = Left.X * Right;
|
|
Result.Y = Left.Y * Right;
|
|
Result.Z = Left.Z * Right;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulV4, 1)
|
|
static inline Vec4 MulV4(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(MulV4);
|
|
|
|
Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_mul_ps(Left.SSE, Right.SSE);
|
|
#else
|
|
Result.X = Left.X * Right.X;
|
|
Result.Y = Left.Y * Right.Y;
|
|
Result.Z = Left.Z * Right.Z;
|
|
Result.W = Left.W * Right.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulV4F, 1)
|
|
static inline Vec4 MulV4F(Vec4 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulV4F);
|
|
|
|
Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 Scalar = _mm_set1_ps(Right);
|
|
Result.SSE = _mm_mul_ps(Left.SSE, Scalar);
|
|
#else
|
|
Result.X = Left.X * Right;
|
|
Result.Y = Left.Y * Right;
|
|
Result.Z = Left.Z * Right;
|
|
Result.W = Left.W * Right;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(DivV2, 1)
|
|
static inline Vec2 DivV2(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(DivV2);
|
|
|
|
Vec2 Result;
|
|
Result.X = Left.X / Right.X;
|
|
Result.Y = Left.Y / Right.Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(DivV2F, 1)
|
|
static inline Vec2 DivV2F(Vec2 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivV2F);
|
|
|
|
Vec2 Result;
|
|
Result.X = Left.X / Right;
|
|
Result.Y = Left.Y / Right;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(DivV3, 1)
|
|
static inline Vec3 DivV3(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(DivV3);
|
|
|
|
Vec3 Result;
|
|
Result.X = Left.X / Right.X;
|
|
Result.Y = Left.Y / Right.Y;
|
|
Result.Z = Left.Z / Right.Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(DivV3F, 1)
|
|
static inline Vec3 DivV3F(Vec3 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivV3F);
|
|
|
|
Vec3 Result;
|
|
Result.X = Left.X / Right;
|
|
Result.Y = Left.Y / Right;
|
|
Result.Z = Left.Z / Right;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(DivV4, 1)
|
|
static inline Vec4 DivV4(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(DivV4);
|
|
|
|
Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_div_ps(Left.SSE, Right.SSE);
|
|
#else
|
|
Result.X = Left.X / Right.X;
|
|
Result.Y = Left.Y / Right.Y;
|
|
Result.Z = Left.Z / Right.Z;
|
|
Result.W = Left.W / Right.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(DivV4F, 1)
|
|
static inline Vec4 DivV4F(Vec4 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivV4F);
|
|
|
|
Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 Scalar = _mm_set1_ps(Right);
|
|
Result.SSE = _mm_div_ps(Left.SSE, Scalar);
|
|
#else
|
|
Result.X = Left.X / Right;
|
|
Result.Y = Left.Y / Right;
|
|
Result.Z = Left.Z / Right;
|
|
Result.W = Left.W / Right;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(EqV2, 1)
|
|
static inline Bool EqV2(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(EqV2);
|
|
return Left.X == Right.X && Left.Y == Right.Y;
|
|
}
|
|
|
|
COVERAGE(EqV3, 1)
|
|
static inline Bool EqV3(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(EqV3);
|
|
return Left.X == Right.X && Left.Y == Right.Y && Left.Z == Right.Z;
|
|
}
|
|
|
|
COVERAGE(EqV4, 1)
|
|
static inline Bool EqV4(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(EqV4);
|
|
return Left.X == Right.X && Left.Y == Right.Y && Left.Z == Right.Z && Left.W == Right.W;
|
|
}
|
|
|
|
COVERAGE(DotV2, 1)
|
|
static inline float DotV2(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(DotV2);
|
|
return (Left.X * Right.X) + (Left.Y * Right.Y);
|
|
}
|
|
|
|
COVERAGE(DotV3, 1)
|
|
static inline float DotV3(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(DotV3);
|
|
return (Left.X * Right.X) + (Left.Y * Right.Y) + (Left.Z * Right.Z);
|
|
}
|
|
|
|
COVERAGE(DotV4, 1)
|
|
static inline float DotV4(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(DotV4);
|
|
|
|
float Result;
|
|
|
|
// NOTE(zak): IN the future if we wanna check what version SSE is support
|
|
// we can use _mm_dp_ps (4.3) but for now we will use the old way.
|
|
// Or a r = _mm_mul_ps(v1, v2), r = _mm_hadd_ps(r, r), r = _mm_hadd_ps(r, r) for SSE3
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSEResultOne = _mm_mul_ps(Left.SSE, Right.SSE);
|
|
__m128 SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(2, 3, 0, 1));
|
|
SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo);
|
|
SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(0, 1, 2, 3));
|
|
SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo);
|
|
_mm_store_ss(&Result, SSEResultOne);
|
|
#else
|
|
Result = ((Left.X * Right.X) + (Left.Z * Right.Z)) + ((Left.Y * Right.Y) + (Left.W * Right.W));
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(Cross, 1)
|
|
static inline Vec3 Cross(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(Cross);
|
|
|
|
Vec3 Result;
|
|
Result.X = (Left.Y * Right.Z) - (Left.Z * Right.Y);
|
|
Result.Y = (Left.Z * Right.X) - (Left.X * Right.Z);
|
|
Result.Z = (Left.X * Right.Y) - (Left.Y * Right.X);
|
|
|
|
return Result;
|
|
}
|
|
|
|
|
|
/*
|
|
* Unary vector operations
|
|
*/
|
|
|
|
COVERAGE(LenSqrV2, 1)
|
|
static inline float LenSqrV2(Vec2 A)
|
|
{
|
|
ASSERT_COVERED(LenSqrV2);
|
|
return DotV2(A, A);
|
|
}
|
|
|
|
COVERAGE(LenSqrV3, 1)
|
|
static inline float LenSqrV3(Vec3 A)
|
|
{
|
|
ASSERT_COVERED(LenSqrV3);
|
|
return DotV3(A, A);
|
|
}
|
|
|
|
COVERAGE(LenSqrV4, 1)
|
|
static inline float LenSqrV4(Vec4 A)
|
|
{
|
|
ASSERT_COVERED(LenSqrV4);
|
|
return DotV4(A, A);
|
|
}
|
|
|
|
COVERAGE(LenV2, 1)
|
|
static inline float LenV2(Vec2 A)
|
|
{
|
|
ASSERT_COVERED(LenV2);
|
|
return SqrtF(LenSqrV2(A));
|
|
}
|
|
|
|
COVERAGE(LenV3, 1)
|
|
static inline float LenV3(Vec3 A)
|
|
{
|
|
ASSERT_COVERED(LenV3);
|
|
return SqrtF(LenSqrV3(A));
|
|
}
|
|
|
|
COVERAGE(LenV4, 1)
|
|
static inline float LenV4(Vec4 A)
|
|
{
|
|
ASSERT_COVERED(LenV4);
|
|
return SqrtF(LenSqrV4(A));
|
|
}
|
|
|
|
COVERAGE(NormV2, 1)
|
|
static inline Vec2 NormV2(Vec2 A)
|
|
{
|
|
ASSERT_COVERED(NormV2);
|
|
return MulV2F(A, InvSqrtF(DotV2(A, A)));
|
|
}
|
|
|
|
COVERAGE(NormV3, 1)
|
|
static inline Vec3 NormV3(Vec3 A)
|
|
{
|
|
ASSERT_COVERED(NormV3);
|
|
return MulV3F(A, InvSqrtF(DotV3(A, A)));
|
|
}
|
|
|
|
COVERAGE(NormV4, 1)
|
|
static inline Vec4 NormV4(Vec4 A)
|
|
{
|
|
ASSERT_COVERED(NormV4);
|
|
return MulV4F(A, InvSqrtF(DotV4(A, A)));
|
|
}
|
|
|
|
/*
|
|
* Utility vector functions
|
|
*/
|
|
|
|
COVERAGE(LerpV2, 1)
|
|
static inline Vec2 LerpV2(Vec2 A, float Time, Vec2 B)
|
|
{
|
|
ASSERT_COVERED(LerpV2);
|
|
return AddV2(MulV2F(A, 1.0f - Time), MulV2F(B, Time));
|
|
}
|
|
|
|
COVERAGE(LerpV3, 1)
|
|
static inline Vec3 LerpV3(Vec3 A, float Time, Vec3 B)
|
|
{
|
|
ASSERT_COVERED(LerpV3);
|
|
return AddV3(MulV3F(A, 1.0f - Time), MulV3F(B, Time));
|
|
}
|
|
|
|
COVERAGE(LerpV4, 1)
|
|
static inline Vec4 LerpV4(Vec4 A, float Time, Vec4 B)
|
|
{
|
|
ASSERT_COVERED(LerpV4);
|
|
return AddV4(MulV4F(A, 1.0f - Time), MulV4F(B, Time));
|
|
}
|
|
|
|
/*
|
|
* SSE stuff
|
|
*/
|
|
|
|
COVERAGE(LinearCombineV4M4, 1)
|
|
static inline Vec4 LinearCombineV4M4(Vec4 Left, Mat4 Right)
|
|
{
|
|
ASSERT_COVERED(LinearCombineV4M4);
|
|
|
|
Vec4 Result;
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_mul_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, 0x00), Right.Columns[0].SSE);
|
|
Result.SSE = _mm_add_ps(Result.SSE, _mm_mul_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, 0x55), Right.Columns[1].SSE));
|
|
Result.SSE = _mm_add_ps(Result.SSE, _mm_mul_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, 0xaa), Right.Columns[2].SSE));
|
|
Result.SSE = _mm_add_ps(Result.SSE, _mm_mul_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, 0xff), Right.Columns[3].SSE));
|
|
#else
|
|
Result.X = Left.Elements[0] * Right.Columns[0].X;
|
|
Result.Y = Left.Elements[0] * Right.Columns[0].Y;
|
|
Result.Z = Left.Elements[0] * Right.Columns[0].Z;
|
|
Result.W = Left.Elements[0] * Right.Columns[0].W;
|
|
|
|
Result.X += Left.Elements[1] * Right.Columns[1].X;
|
|
Result.Y += Left.Elements[1] * Right.Columns[1].Y;
|
|
Result.Z += Left.Elements[1] * Right.Columns[1].Z;
|
|
Result.W += Left.Elements[1] * Right.Columns[1].W;
|
|
|
|
Result.X += Left.Elements[2] * Right.Columns[2].X;
|
|
Result.Y += Left.Elements[2] * Right.Columns[2].Y;
|
|
Result.Z += Left.Elements[2] * Right.Columns[2].Z;
|
|
Result.W += Left.Elements[2] * Right.Columns[2].W;
|
|
|
|
Result.X += Left.Elements[3] * Right.Columns[3].X;
|
|
Result.Y += Left.Elements[3] * Right.Columns[3].Y;
|
|
Result.Z += Left.Elements[3] * Right.Columns[3].Z;
|
|
Result.W += Left.Elements[3] * Right.Columns[3].W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
/*
|
|
* 2x2 Matrices
|
|
*/
|
|
|
|
COVERAGE(M2, 1)
|
|
static inline Mat2 M2(void)
|
|
{
|
|
ASSERT_COVERED(M2);
|
|
Mat2 Result = {0};
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(M2D, 1)
|
|
static inline Mat2 M2D(float Diagonal)
|
|
{
|
|
ASSERT_COVERED(M2D);
|
|
|
|
Mat2 Result = {0};
|
|
Result.Elements[0][0] = Diagonal;
|
|
Result.Elements[1][1] = Diagonal;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(TransposeM2, 1)
|
|
static inline Mat2 TransposeM2(Mat2 Matrix)
|
|
{
|
|
ASSERT_COVERED(TransposeM2);
|
|
|
|
Mat2 Result = Matrix;
|
|
|
|
Result.Elements[0][1] = Matrix.Elements[1][0];
|
|
Result.Elements[1][0] = Matrix.Elements[0][1];
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(AddM2, 1)
|
|
static inline Mat2 AddM2(Mat2 Left, Mat2 Right)
|
|
{
|
|
ASSERT_COVERED(AddM2);
|
|
|
|
Mat2 Result;
|
|
|
|
Result.Elements[0][0] = Left.Elements[0][0] + Right.Elements[0][0];
|
|
Result.Elements[0][1] = Left.Elements[0][1] + Right.Elements[0][1];
|
|
Result.Elements[1][0] = Left.Elements[1][0] + Right.Elements[1][0];
|
|
Result.Elements[1][1] = Left.Elements[1][1] + Right.Elements[1][1];
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(SubM2, 1)
|
|
static inline Mat2 SubM2(Mat2 Left, Mat2 Right)
|
|
{
|
|
ASSERT_COVERED(SubM2);
|
|
|
|
Mat2 Result;
|
|
|
|
Result.Elements[0][0] = Left.Elements[0][0] - Right.Elements[0][0];
|
|
Result.Elements[0][1] = Left.Elements[0][1] - Right.Elements[0][1];
|
|
Result.Elements[1][0] = Left.Elements[1][0] - Right.Elements[1][0];
|
|
Result.Elements[1][1] = Left.Elements[1][1] - Right.Elements[1][1];
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulM2V2, 1)
|
|
static inline Vec2 MulM2V2(Mat2 Matrix, Vec2 Vector)
|
|
{
|
|
ASSERT_COVERED(MulM2V2);
|
|
|
|
Vec2 Result;
|
|
|
|
Result.X = Vector.Elements[0] * Matrix.Columns[0].X;
|
|
Result.Y = Vector.Elements[0] * Matrix.Columns[0].Y;
|
|
|
|
Result.X += Vector.Elements[1] * Matrix.Columns[1].X;
|
|
Result.Y += Vector.Elements[1] * Matrix.Columns[1].Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulM2, 1)
|
|
static inline Mat2 MulM2(Mat2 Left, Mat2 Right)
|
|
{
|
|
ASSERT_COVERED(MulM2);
|
|
|
|
Mat2 Result;
|
|
Result.Columns[0] = MulM2V2(Left, Right.Columns[0]);
|
|
Result.Columns[1] = MulM2V2(Left, Right.Columns[1]);
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulM2F, 1)
|
|
static inline Mat2 MulM2F(Mat2 Matrix, float Scalar)
|
|
{
|
|
ASSERT_COVERED(MulM2F);
|
|
|
|
Mat2 Result;
|
|
|
|
Result.Elements[0][0] = Matrix.Elements[0][0] * Scalar;
|
|
Result.Elements[0][1] = Matrix.Elements[0][1] * Scalar;
|
|
Result.Elements[1][0] = Matrix.Elements[1][0] * Scalar;
|
|
Result.Elements[1][1] = Matrix.Elements[1][1] * Scalar;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(DivM2F, 1)
|
|
static inline Mat2 DivM2F(Mat2 Matrix, float Scalar)
|
|
{
|
|
ASSERT_COVERED(DivM2F);
|
|
|
|
Mat2 Result;
|
|
|
|
Result.Elements[0][0] = Matrix.Elements[0][0] / Scalar;
|
|
Result.Elements[0][1] = Matrix.Elements[0][1] / Scalar;
|
|
Result.Elements[1][0] = Matrix.Elements[1][0] / Scalar;
|
|
Result.Elements[1][1] = Matrix.Elements[1][1] / Scalar;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(DeterminantM2, 1)
|
|
static inline float DeterminantM2(Mat2 Matrix)
|
|
{
|
|
ASSERT_COVERED(DeterminantM2);
|
|
return Matrix.Elements[0][0]*Matrix.Elements[1][1] - Matrix.Elements[0][1]*Matrix.Elements[1][0];
|
|
}
|
|
|
|
|
|
COVERAGE(InvGeneralM2, 1)
|
|
static inline Mat2 InvGeneralM2(Mat2 Matrix)
|
|
{
|
|
ASSERT_COVERED(InvGeneralM2);
|
|
|
|
Mat2 Result;
|
|
float InvDeterminant = 1.0f / DeterminantM2(Matrix);
|
|
Result.Elements[0][0] = InvDeterminant * +Matrix.Elements[1][1];
|
|
Result.Elements[1][1] = InvDeterminant * +Matrix.Elements[0][0];
|
|
Result.Elements[0][1] = InvDeterminant * -Matrix.Elements[0][1];
|
|
Result.Elements[1][0] = InvDeterminant * -Matrix.Elements[1][0];
|
|
|
|
return Result;
|
|
}
|
|
|
|
/*
|
|
* 3x3 Matrices
|
|
*/
|
|
|
|
COVERAGE(M3, 1)
|
|
static inline Mat3 M3(void)
|
|
{
|
|
ASSERT_COVERED(M3);
|
|
Mat3 Result = {0};
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(M3D, 1)
|
|
static inline Mat3 M3D(float Diagonal)
|
|
{
|
|
ASSERT_COVERED(M3D);
|
|
|
|
Mat3 Result = {0};
|
|
Result.Elements[0][0] = Diagonal;
|
|
Result.Elements[1][1] = Diagonal;
|
|
Result.Elements[2][2] = Diagonal;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(TransposeM3, 1)
|
|
static inline Mat3 TransposeM3(Mat3 Matrix)
|
|
{
|
|
ASSERT_COVERED(TransposeM3);
|
|
|
|
Mat3 Result = Matrix;
|
|
|
|
Result.Elements[0][1] = Matrix.Elements[1][0];
|
|
Result.Elements[0][2] = Matrix.Elements[2][0];
|
|
Result.Elements[1][0] = Matrix.Elements[0][1];
|
|
Result.Elements[1][2] = Matrix.Elements[2][1];
|
|
Result.Elements[2][1] = Matrix.Elements[1][2];
|
|
Result.Elements[2][0] = Matrix.Elements[0][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(AddM3, 1)
|
|
static inline Mat3 AddM3(Mat3 Left, Mat3 Right)
|
|
{
|
|
ASSERT_COVERED(AddM3);
|
|
|
|
Mat3 Result;
|
|
|
|
Result.Elements[0][0] = Left.Elements[0][0] + Right.Elements[0][0];
|
|
Result.Elements[0][1] = Left.Elements[0][1] + Right.Elements[0][1];
|
|
Result.Elements[0][2] = Left.Elements[0][2] + Right.Elements[0][2];
|
|
Result.Elements[1][0] = Left.Elements[1][0] + Right.Elements[1][0];
|
|
Result.Elements[1][1] = Left.Elements[1][1] + Right.Elements[1][1];
|
|
Result.Elements[1][2] = Left.Elements[1][2] + Right.Elements[1][2];
|
|
Result.Elements[2][0] = Left.Elements[2][0] + Right.Elements[2][0];
|
|
Result.Elements[2][1] = Left.Elements[2][1] + Right.Elements[2][1];
|
|
Result.Elements[2][2] = Left.Elements[2][2] + Right.Elements[2][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(SubM3, 1)
|
|
static inline Mat3 SubM3(Mat3 Left, Mat3 Right)
|
|
{
|
|
ASSERT_COVERED(SubM3);
|
|
|
|
Mat3 Result;
|
|
|
|
Result.Elements[0][0] = Left.Elements[0][0] - Right.Elements[0][0];
|
|
Result.Elements[0][1] = Left.Elements[0][1] - Right.Elements[0][1];
|
|
Result.Elements[0][2] = Left.Elements[0][2] - Right.Elements[0][2];
|
|
Result.Elements[1][0] = Left.Elements[1][0] - Right.Elements[1][0];
|
|
Result.Elements[1][1] = Left.Elements[1][1] - Right.Elements[1][1];
|
|
Result.Elements[1][2] = Left.Elements[1][2] - Right.Elements[1][2];
|
|
Result.Elements[2][0] = Left.Elements[2][0] - Right.Elements[2][0];
|
|
Result.Elements[2][1] = Left.Elements[2][1] - Right.Elements[2][1];
|
|
Result.Elements[2][2] = Left.Elements[2][2] - Right.Elements[2][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulM3V3, 1)
|
|
static inline Vec3 MulM3V3(Mat3 Matrix, Vec3 Vector)
|
|
{
|
|
ASSERT_COVERED(MulM3V3);
|
|
|
|
Vec3 Result;
|
|
|
|
Result.X = Vector.Elements[0] * Matrix.Columns[0].X;
|
|
Result.Y = Vector.Elements[0] * Matrix.Columns[0].Y;
|
|
Result.Z = Vector.Elements[0] * Matrix.Columns[0].Z;
|
|
|
|
Result.X += Vector.Elements[1] * Matrix.Columns[1].X;
|
|
Result.Y += Vector.Elements[1] * Matrix.Columns[1].Y;
|
|
Result.Z += Vector.Elements[1] * Matrix.Columns[1].Z;
|
|
|
|
Result.X += Vector.Elements[2] * Matrix.Columns[2].X;
|
|
Result.Y += Vector.Elements[2] * Matrix.Columns[2].Y;
|
|
Result.Z += Vector.Elements[2] * Matrix.Columns[2].Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulM3, 1)
|
|
static inline Mat3 MulM3(Mat3 Left, Mat3 Right)
|
|
{
|
|
ASSERT_COVERED(MulM3);
|
|
|
|
Mat3 Result;
|
|
Result.Columns[0] = MulM3V3(Left, Right.Columns[0]);
|
|
Result.Columns[1] = MulM3V3(Left, Right.Columns[1]);
|
|
Result.Columns[2] = MulM3V3(Left, Right.Columns[2]);
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulM3F, 1)
|
|
static inline Mat3 MulM3F(Mat3 Matrix, float Scalar)
|
|
{
|
|
ASSERT_COVERED(MulM3F);
|
|
|
|
Mat3 Result;
|
|
|
|
Result.Elements[0][0] = Matrix.Elements[0][0] * Scalar;
|
|
Result.Elements[0][1] = Matrix.Elements[0][1] * Scalar;
|
|
Result.Elements[0][2] = Matrix.Elements[0][2] * Scalar;
|
|
Result.Elements[1][0] = Matrix.Elements[1][0] * Scalar;
|
|
Result.Elements[1][1] = Matrix.Elements[1][1] * Scalar;
|
|
Result.Elements[1][2] = Matrix.Elements[1][2] * Scalar;
|
|
Result.Elements[2][0] = Matrix.Elements[2][0] * Scalar;
|
|
Result.Elements[2][1] = Matrix.Elements[2][1] * Scalar;
|
|
Result.Elements[2][2] = Matrix.Elements[2][2] * Scalar;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(DivM3, 1)
|
|
static inline Mat3 DivM3F(Mat3 Matrix, float Scalar)
|
|
{
|
|
ASSERT_COVERED(DivM3);
|
|
|
|
Mat3 Result;
|
|
|
|
Result.Elements[0][0] = Matrix.Elements[0][0] / Scalar;
|
|
Result.Elements[0][1] = Matrix.Elements[0][1] / Scalar;
|
|
Result.Elements[0][2] = Matrix.Elements[0][2] / Scalar;
|
|
Result.Elements[1][0] = Matrix.Elements[1][0] / Scalar;
|
|
Result.Elements[1][1] = Matrix.Elements[1][1] / Scalar;
|
|
Result.Elements[1][2] = Matrix.Elements[1][2] / Scalar;
|
|
Result.Elements[2][0] = Matrix.Elements[2][0] / Scalar;
|
|
Result.Elements[2][1] = Matrix.Elements[2][1] / Scalar;
|
|
Result.Elements[2][2] = Matrix.Elements[2][2] / Scalar;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(DeterminantM3, 1)
|
|
static inline float DeterminantM3(Mat3 Matrix)
|
|
{
|
|
ASSERT_COVERED(DeterminantM3);
|
|
|
|
Mat3 cross_result;
|
|
cross_result.Columns[0] = Cross(Matrix.Columns[1], Matrix.Columns[2]);
|
|
cross_result.Columns[1] = Cross(Matrix.Columns[2], Matrix.Columns[0]);
|
|
cross_result.Columns[2] = Cross(Matrix.Columns[0], Matrix.Columns[1]);
|
|
|
|
return DotV3(cross_result.Columns[2], Matrix.Columns[2]);
|
|
}
|
|
|
|
COVERAGE(InvGeneralM3, 1)
|
|
static inline Mat3 InvGeneralM3(Mat3 Matrix)
|
|
{
|
|
ASSERT_COVERED(InvGeneralM3);
|
|
|
|
Mat3 cross_result;
|
|
cross_result.Columns[0] = Cross(Matrix.Columns[1], Matrix.Columns[2]);
|
|
cross_result.Columns[1] = Cross(Matrix.Columns[2], Matrix.Columns[0]);
|
|
cross_result.Columns[2] = Cross(Matrix.Columns[0], Matrix.Columns[1]);
|
|
|
|
float InvDeterminant = 1.0f / DotV3(cross_result.Columns[2], Matrix.Columns[2]);
|
|
|
|
Mat3 Result;
|
|
Result.Columns[0] = MulV3F(cross_result.Columns[0], InvDeterminant);
|
|
Result.Columns[1] = MulV3F(cross_result.Columns[1], InvDeterminant);
|
|
Result.Columns[2] = MulV3F(cross_result.Columns[2], InvDeterminant);
|
|
|
|
return TransposeM3(Result);
|
|
}
|
|
|
|
/*
|
|
* 4x4 Matrices
|
|
*/
|
|
|
|
COVERAGE(M4, 1)
|
|
static inline Mat4 M4(void)
|
|
{
|
|
ASSERT_COVERED(M4);
|
|
Mat4 Result = {0};
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(M4D, 1)
|
|
static inline Mat4 M4D(float Diagonal)
|
|
{
|
|
ASSERT_COVERED(M4D);
|
|
|
|
Mat4 Result = {0};
|
|
Result.Elements[0][0] = Diagonal;
|
|
Result.Elements[1][1] = Diagonal;
|
|
Result.Elements[2][2] = Diagonal;
|
|
Result.Elements[3][3] = Diagonal;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(TransposeM4, 1)
|
|
static inline Mat4 TransposeM4(Mat4 Matrix)
|
|
{
|
|
ASSERT_COVERED(TransposeM4);
|
|
|
|
Mat4 Result = Matrix;
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
_MM_TRANSPOSE4_PS(Result.Columns[0].SSE, Result.Columns[1].SSE, Result.Columns[2].SSE, Result.Columns[3].SSE);
|
|
#else
|
|
Result.Elements[0][1] = Matrix.Elements[1][0];
|
|
Result.Elements[0][2] = Matrix.Elements[2][0];
|
|
Result.Elements[0][3] = Matrix.Elements[3][0];
|
|
Result.Elements[1][0] = Matrix.Elements[0][1];
|
|
Result.Elements[1][2] = Matrix.Elements[2][1];
|
|
Result.Elements[1][3] = Matrix.Elements[3][1];
|
|
Result.Elements[2][1] = Matrix.Elements[1][2];
|
|
Result.Elements[2][0] = Matrix.Elements[0][2];
|
|
Result.Elements[2][3] = Matrix.Elements[3][2];
|
|
Result.Elements[3][1] = Matrix.Elements[1][3];
|
|
Result.Elements[3][2] = Matrix.Elements[2][3];
|
|
Result.Elements[3][0] = Matrix.Elements[0][3];
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(AddM4, 1)
|
|
static inline Mat4 AddM4(Mat4 Left, Mat4 Right)
|
|
{
|
|
ASSERT_COVERED(AddM4);
|
|
|
|
Mat4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.Columns[0].SSE = _mm_add_ps(Left.Columns[0].SSE, Right.Columns[0].SSE);
|
|
Result.Columns[1].SSE = _mm_add_ps(Left.Columns[1].SSE, Right.Columns[1].SSE);
|
|
Result.Columns[2].SSE = _mm_add_ps(Left.Columns[2].SSE, Right.Columns[2].SSE);
|
|
Result.Columns[3].SSE = _mm_add_ps(Left.Columns[3].SSE, Right.Columns[3].SSE);
|
|
#else
|
|
Result.Elements[0][0] = Left.Elements[0][0] + Right.Elements[0][0];
|
|
Result.Elements[0][1] = Left.Elements[0][1] + Right.Elements[0][1];
|
|
Result.Elements[0][2] = Left.Elements[0][2] + Right.Elements[0][2];
|
|
Result.Elements[0][3] = Left.Elements[0][3] + Right.Elements[0][3];
|
|
Result.Elements[1][0] = Left.Elements[1][0] + Right.Elements[1][0];
|
|
Result.Elements[1][1] = Left.Elements[1][1] + Right.Elements[1][1];
|
|
Result.Elements[1][2] = Left.Elements[1][2] + Right.Elements[1][2];
|
|
Result.Elements[1][3] = Left.Elements[1][3] + Right.Elements[1][3];
|
|
Result.Elements[2][0] = Left.Elements[2][0] + Right.Elements[2][0];
|
|
Result.Elements[2][1] = Left.Elements[2][1] + Right.Elements[2][1];
|
|
Result.Elements[2][2] = Left.Elements[2][2] + Right.Elements[2][2];
|
|
Result.Elements[2][3] = Left.Elements[2][3] + Right.Elements[2][3];
|
|
Result.Elements[3][0] = Left.Elements[3][0] + Right.Elements[3][0];
|
|
Result.Elements[3][1] = Left.Elements[3][1] + Right.Elements[3][1];
|
|
Result.Elements[3][2] = Left.Elements[3][2] + Right.Elements[3][2];
|
|
Result.Elements[3][3] = Left.Elements[3][3] + Right.Elements[3][3];
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(SubM4, 1)
|
|
static inline Mat4 SubM4(Mat4 Left, Mat4 Right)
|
|
{
|
|
ASSERT_COVERED(SubM4);
|
|
|
|
Mat4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.Columns[0].SSE = _mm_sub_ps(Left.Columns[0].SSE, Right.Columns[0].SSE);
|
|
Result.Columns[1].SSE = _mm_sub_ps(Left.Columns[1].SSE, Right.Columns[1].SSE);
|
|
Result.Columns[2].SSE = _mm_sub_ps(Left.Columns[2].SSE, Right.Columns[2].SSE);
|
|
Result.Columns[3].SSE = _mm_sub_ps(Left.Columns[3].SSE, Right.Columns[3].SSE);
|
|
#else
|
|
Result.Elements[0][0] = Left.Elements[0][0] - Right.Elements[0][0];
|
|
Result.Elements[0][1] = Left.Elements[0][1] - Right.Elements[0][1];
|
|
Result.Elements[0][2] = Left.Elements[0][2] - Right.Elements[0][2];
|
|
Result.Elements[0][3] = Left.Elements[0][3] - Right.Elements[0][3];
|
|
Result.Elements[1][0] = Left.Elements[1][0] - Right.Elements[1][0];
|
|
Result.Elements[1][1] = Left.Elements[1][1] - Right.Elements[1][1];
|
|
Result.Elements[1][2] = Left.Elements[1][2] - Right.Elements[1][2];
|
|
Result.Elements[1][3] = Left.Elements[1][3] - Right.Elements[1][3];
|
|
Result.Elements[2][0] = Left.Elements[2][0] - Right.Elements[2][0];
|
|
Result.Elements[2][1] = Left.Elements[2][1] - Right.Elements[2][1];
|
|
Result.Elements[2][2] = Left.Elements[2][2] - Right.Elements[2][2];
|
|
Result.Elements[2][3] = Left.Elements[2][3] - Right.Elements[2][3];
|
|
Result.Elements[3][0] = Left.Elements[3][0] - Right.Elements[3][0];
|
|
Result.Elements[3][1] = Left.Elements[3][1] - Right.Elements[3][1];
|
|
Result.Elements[3][2] = Left.Elements[3][2] - Right.Elements[3][2];
|
|
Result.Elements[3][3] = Left.Elements[3][3] - Right.Elements[3][3];
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulM4, 1)
|
|
static inline Mat4 MulM4(Mat4 Left, Mat4 Right)
|
|
{
|
|
ASSERT_COVERED(MulM4);
|
|
|
|
Mat4 Result;
|
|
Result.Columns[0] = LinearCombineV4M4(Right.Columns[0], Left);
|
|
Result.Columns[1] = LinearCombineV4M4(Right.Columns[1], Left);
|
|
Result.Columns[2] = LinearCombineV4M4(Right.Columns[2], Left);
|
|
Result.Columns[3] = LinearCombineV4M4(Right.Columns[3], Left);
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulM4F, 1)
|
|
static inline Mat4 MulM4F(Mat4 Matrix, float Scalar)
|
|
{
|
|
ASSERT_COVERED(MulM4F);
|
|
|
|
Mat4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSEScalar = _mm_set1_ps(Scalar);
|
|
Result.Columns[0].SSE = _mm_mul_ps(Matrix.Columns[0].SSE, SSEScalar);
|
|
Result.Columns[1].SSE = _mm_mul_ps(Matrix.Columns[1].SSE, SSEScalar);
|
|
Result.Columns[2].SSE = _mm_mul_ps(Matrix.Columns[2].SSE, SSEScalar);
|
|
Result.Columns[3].SSE = _mm_mul_ps(Matrix.Columns[3].SSE, SSEScalar);
|
|
#else
|
|
Result.Elements[0][0] = Matrix.Elements[0][0] * Scalar;
|
|
Result.Elements[0][1] = Matrix.Elements[0][1] * Scalar;
|
|
Result.Elements[0][2] = Matrix.Elements[0][2] * Scalar;
|
|
Result.Elements[0][3] = Matrix.Elements[0][3] * Scalar;
|
|
Result.Elements[1][0] = Matrix.Elements[1][0] * Scalar;
|
|
Result.Elements[1][1] = Matrix.Elements[1][1] * Scalar;
|
|
Result.Elements[1][2] = Matrix.Elements[1][2] * Scalar;
|
|
Result.Elements[1][3] = Matrix.Elements[1][3] * Scalar;
|
|
Result.Elements[2][0] = Matrix.Elements[2][0] * Scalar;
|
|
Result.Elements[2][1] = Matrix.Elements[2][1] * Scalar;
|
|
Result.Elements[2][2] = Matrix.Elements[2][2] * Scalar;
|
|
Result.Elements[2][3] = Matrix.Elements[2][3] * Scalar;
|
|
Result.Elements[3][0] = Matrix.Elements[3][0] * Scalar;
|
|
Result.Elements[3][1] = Matrix.Elements[3][1] * Scalar;
|
|
Result.Elements[3][2] = Matrix.Elements[3][2] * Scalar;
|
|
Result.Elements[3][3] = Matrix.Elements[3][3] * Scalar;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulM4V4, 1)
|
|
static inline Vec4 MulM4V4(Mat4 Matrix, Vec4 Vector)
|
|
{
|
|
ASSERT_COVERED(MulM4V4);
|
|
return LinearCombineV4M4(Vector, Matrix);
|
|
}
|
|
|
|
COVERAGE(DivM4F, 1)
|
|
static inline Mat4 DivM4F(Mat4 Matrix, float Scalar)
|
|
{
|
|
ASSERT_COVERED(DivM4F);
|
|
|
|
Mat4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSEScalar = _mm_set1_ps(Scalar);
|
|
Result.Columns[0].SSE = _mm_div_ps(Matrix.Columns[0].SSE, SSEScalar);
|
|
Result.Columns[1].SSE = _mm_div_ps(Matrix.Columns[1].SSE, SSEScalar);
|
|
Result.Columns[2].SSE = _mm_div_ps(Matrix.Columns[2].SSE, SSEScalar);
|
|
Result.Columns[3].SSE = _mm_div_ps(Matrix.Columns[3].SSE, SSEScalar);
|
|
#else
|
|
Result.Elements[0][0] = Matrix.Elements[0][0] / Scalar;
|
|
Result.Elements[0][1] = Matrix.Elements[0][1] / Scalar;
|
|
Result.Elements[0][2] = Matrix.Elements[0][2] / Scalar;
|
|
Result.Elements[0][3] = Matrix.Elements[0][3] / Scalar;
|
|
Result.Elements[1][0] = Matrix.Elements[1][0] / Scalar;
|
|
Result.Elements[1][1] = Matrix.Elements[1][1] / Scalar;
|
|
Result.Elements[1][2] = Matrix.Elements[1][2] / Scalar;
|
|
Result.Elements[1][3] = Matrix.Elements[1][3] / Scalar;
|
|
Result.Elements[2][0] = Matrix.Elements[2][0] / Scalar;
|
|
Result.Elements[2][1] = Matrix.Elements[2][1] / Scalar;
|
|
Result.Elements[2][2] = Matrix.Elements[2][2] / Scalar;
|
|
Result.Elements[2][3] = Matrix.Elements[2][3] / Scalar;
|
|
Result.Elements[3][0] = Matrix.Elements[3][0] / Scalar;
|
|
Result.Elements[3][1] = Matrix.Elements[3][1] / Scalar;
|
|
Result.Elements[3][2] = Matrix.Elements[3][2] / Scalar;
|
|
Result.Elements[3][3] = Matrix.Elements[3][3] / Scalar;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(DeterminantM4, 1)
|
|
static inline float DeterminantM4(Mat4 Matrix)
|
|
{
|
|
ASSERT_COVERED(DeterminantM4);
|
|
|
|
Vec3 C01 = Cross(Matrix.Columns[0].XYZ, Matrix.Columns[1].XYZ);
|
|
Vec3 C23 = Cross(Matrix.Columns[2].XYZ, Matrix.Columns[3].XYZ);
|
|
Vec3 B10 = SubV3(MulV3F(Matrix.Columns[0].XYZ, Matrix.Columns[1].W), MulV3F(Matrix.Columns[1].XYZ, Matrix.Columns[0].W));
|
|
Vec3 B32 = SubV3(MulV3F(Matrix.Columns[2].XYZ, Matrix.Columns[3].W), MulV3F(Matrix.Columns[3].XYZ, Matrix.Columns[2].W));
|
|
|
|
return DotV3(C01, B32) + DotV3(C23, B10);
|
|
}
|
|
|
|
COVERAGE(InvGeneralM4, 1)
|
|
static inline Mat4 InvGeneralM4(Mat4 Matrix)
|
|
{
|
|
ASSERT_COVERED(InvGeneralM4);
|
|
|
|
Vec3 C01 = Cross(Matrix.Columns[0].XYZ, Matrix.Columns[1].XYZ);
|
|
Vec3 C23 = Cross(Matrix.Columns[2].XYZ, Matrix.Columns[3].XYZ);
|
|
Vec3 B10 = SubV3(MulV3F(Matrix.Columns[0].XYZ, Matrix.Columns[1].W), MulV3F(Matrix.Columns[1].XYZ, Matrix.Columns[0].W));
|
|
Vec3 B32 = SubV3(MulV3F(Matrix.Columns[2].XYZ, Matrix.Columns[3].W), MulV3F(Matrix.Columns[3].XYZ, Matrix.Columns[2].W));
|
|
|
|
float InvDeterminant = 1.0f / (DotV3(C01, B32) + DotV3(C23, B10));
|
|
C01 = MulV3F(C01, InvDeterminant);
|
|
C23 = MulV3F(C23, InvDeterminant);
|
|
B10 = MulV3F(B10, InvDeterminant);
|
|
B32 = MulV3F(B32, InvDeterminant);
|
|
|
|
Mat4 Result;
|
|
Result.Columns[0] = V4V(AddV3(Cross(Matrix.Columns[1].XYZ, B32), MulV3F(C23, Matrix.Columns[1].W)), -DotV3(Matrix.Columns[1].XYZ, C23));
|
|
Result.Columns[1] = V4V(SubV3(Cross(B32, Matrix.Columns[0].XYZ), MulV3F(C23, Matrix.Columns[0].W)), +DotV3(Matrix.Columns[0].XYZ, C23));
|
|
Result.Columns[2] = V4V(AddV3(Cross(Matrix.Columns[3].XYZ, B10), MulV3F(C01, Matrix.Columns[3].W)), -DotV3(Matrix.Columns[3].XYZ, C01));
|
|
Result.Columns[3] = V4V(SubV3(Cross(B10, Matrix.Columns[2].XYZ), MulV3F(C01, Matrix.Columns[2].W)), +DotV3(Matrix.Columns[2].XYZ, C01));
|
|
|
|
return TransposeM4(Result);
|
|
}
|
|
|
|
/*
|
|
* Common graphics transformations
|
|
*/
|
|
|
|
COVERAGE(Orthographic_RH_NO, 1)
|
|
static inline Mat4 Orthographic_RH_NO(float Left, float Right, float Bottom, float Top, float Near, float Far)
|
|
{
|
|
ASSERT_COVERED(Orthographic_RH_NO);
|
|
|
|
Mat4 Result = {0};
|
|
|
|
Result.Elements[0][0] = 2.0f / (Right - Left);
|
|
Result.Elements[1][1] = 2.0f / (Top - Bottom);
|
|
Result.Elements[3][3] = 1.0f;
|
|
|
|
Result.Elements[3][0] = (Left + Right) / (Left - Right);
|
|
Result.Elements[3][1] = (Bottom + Top) / (Bottom - Top);
|
|
|
|
Result.Elements[2][2] = 2.0f / (Near - Far);
|
|
Result.Elements[3][2] = (Far + Near) / (Near - Far);
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(Orthographic_RH_ZO, 1)
|
|
static inline Mat4 Orthographic_RH_ZO(float Left, float Right, float Bottom, float Top, float Near, float Far)
|
|
{
|
|
ASSERT_COVERED(Orthographic_RH_ZO);
|
|
|
|
Mat4 Result = {0};
|
|
|
|
Result.Elements[0][0] = 2.0f / (Right - Left);
|
|
Result.Elements[1][1] = 2.0f / (Top - Bottom);
|
|
Result.Elements[3][3] = 1.0f;
|
|
|
|
Result.Elements[3][0] = (Left + Right) / (Left - Right);
|
|
Result.Elements[3][1] = (Bottom + Top) / (Bottom - Top);
|
|
|
|
Result.Elements[2][2] = 1.0f / (Near - Far);
|
|
Result.Elements[3][2] = (Near) / (Near - Far);
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(Orthographic_LH_NO, 1)
|
|
static inline Mat4 Orthographic_LH_NO(float Left, float Right, float Bottom, float Top, float Near, float Far)
|
|
{
|
|
ASSERT_COVERED(Orthographic_LH_NO);
|
|
|
|
Mat4 Result = Orthographic_RH_NO(Left, Right, Bottom, Top, Near, Far);
|
|
Result.Elements[2][2] = -Result.Elements[2][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(Orthographic_LH_ZO, 1)
|
|
static inline Mat4 Orthographic_LH_ZO(float Left, float Right, float Bottom, float Top, float Near, float Far)
|
|
{
|
|
ASSERT_COVERED(Orthographic_LH_ZO);
|
|
|
|
Mat4 Result = Orthographic_RH_ZO(Left, Right, Bottom, Top, Near, Far);
|
|
Result.Elements[2][2] = -Result.Elements[2][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(InvOrthographic, 1)
|
|
static inline Mat4 InvOrthographic(Mat4 OrthoMatrix)
|
|
{
|
|
ASSERT_COVERED(InvOrthographic);
|
|
|
|
Mat4 Result = {0};
|
|
Result.Elements[0][0] = 1.0f / OrthoMatrix.Elements[0][0];
|
|
Result.Elements[1][1] = 1.0f / OrthoMatrix.Elements[1][1];
|
|
Result.Elements[2][2] = 1.0f / OrthoMatrix.Elements[2][2];
|
|
Result.Elements[3][3] = 1.0f;
|
|
|
|
Result.Elements[3][0] = -OrthoMatrix.Elements[3][0] * Result.Elements[0][0];
|
|
Result.Elements[3][1] = -OrthoMatrix.Elements[3][1] * Result.Elements[1][1];
|
|
Result.Elements[3][2] = -OrthoMatrix.Elements[3][2] * Result.Elements[2][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(Perspective_RH_NO, 1)
|
|
static inline Mat4 Perspective_RH_NO(float FOV, float AspectRatio, float Near, float Far)
|
|
{
|
|
ASSERT_COVERED(Perspective_RH_NO);
|
|
|
|
Mat4 Result = {0};
|
|
|
|
// See https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml
|
|
|
|
float Cotangent = 1.0f / TanF(FOV / 2.0f);
|
|
Result.Elements[0][0] = Cotangent / AspectRatio;
|
|
Result.Elements[1][1] = Cotangent;
|
|
Result.Elements[2][3] = -1.0f;
|
|
|
|
Result.Elements[2][2] = (Near + Far) / (Near - Far);
|
|
Result.Elements[3][2] = (2.0f * Near * Far) / (Near - Far);
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(Perspective_RH_ZO, 1)
|
|
static inline Mat4 Perspective_RH_ZO(float FOV, float AspectRatio, float Near, float Far)
|
|
{
|
|
ASSERT_COVERED(Perspective_RH_ZO);
|
|
|
|
Mat4 Result = {0};
|
|
|
|
// See https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml
|
|
|
|
float Cotangent = 1.0f / TanF(FOV / 2.0f);
|
|
Result.Elements[0][0] = Cotangent / AspectRatio;
|
|
Result.Elements[1][1] = Cotangent;
|
|
Result.Elements[2][3] = -1.0f;
|
|
|
|
Result.Elements[2][2] = (Far) / (Near - Far);
|
|
Result.Elements[3][2] = (Near * Far) / (Near - Far);
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(Perspective_LH_NO, 1)
|
|
static inline Mat4 Perspective_LH_NO(float FOV, float AspectRatio, float Near, float Far)
|
|
{
|
|
ASSERT_COVERED(Perspective_LH_NO);
|
|
|
|
Mat4 Result = Perspective_RH_NO(FOV, AspectRatio, Near, Far);
|
|
Result.Elements[2][2] = -Result.Elements[2][2];
|
|
Result.Elements[2][3] = -Result.Elements[2][3];
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(Perspective_LH_ZO, 1)
|
|
static inline Mat4 Perspective_LH_ZO(float FOV, float AspectRatio, float Near, float Far)
|
|
{
|
|
ASSERT_COVERED(Perspective_LH_ZO);
|
|
|
|
Mat4 Result = Perspective_RH_ZO(FOV, AspectRatio, Near, Far);
|
|
Result.Elements[2][2] = -Result.Elements[2][2];
|
|
Result.Elements[2][3] = -Result.Elements[2][3];
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(InvPerspective, 1)
|
|
static inline Mat4 InvPerspective(Mat4 PerspectiveMatrix)
|
|
{
|
|
ASSERT_COVERED(InvPerspective);
|
|
|
|
Mat4 Result = {0};
|
|
Result.Elements[0][0] = 1.0f / PerspectiveMatrix.Elements[0][0];
|
|
Result.Elements[1][1] = 1.0f / PerspectiveMatrix.Elements[1][1];
|
|
Result.Elements[2][2] = 0.0f;
|
|
|
|
Result.Elements[2][3] = 1.0f / PerspectiveMatrix.Elements[3][2];
|
|
Result.Elements[3][3] = PerspectiveMatrix.Elements[2][2] * Result.Elements[2][3];
|
|
Result.Elements[3][2] = PerspectiveMatrix.Elements[2][3];
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(Translate, 1)
|
|
static inline Mat4 Translate(Vec3 Translation)
|
|
{
|
|
ASSERT_COVERED(Translate);
|
|
|
|
Mat4 Result = M4D(1.0f);
|
|
Result.Elements[3][0] = Translation.X;
|
|
Result.Elements[3][1] = Translation.Y;
|
|
Result.Elements[3][2] = Translation.Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(InvTranslate, 1)
|
|
static inline Mat4 InvTranslate(Mat4 TranslationMatrix)
|
|
{
|
|
ASSERT_COVERED(InvTranslate);
|
|
|
|
Mat4 Result = TranslationMatrix;
|
|
Result.Elements[3][0] = -Result.Elements[3][0];
|
|
Result.Elements[3][1] = -Result.Elements[3][1];
|
|
Result.Elements[3][2] = -Result.Elements[3][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(Rotate_RH, 1)
|
|
static inline Mat4 Rotate_RH(float Angle, Vec3 Axis)
|
|
{
|
|
ASSERT_COVERED(Rotate_RH);
|
|
|
|
Mat4 Result = M4D(1.0f);
|
|
|
|
Axis = NormV3(Axis);
|
|
|
|
float SinTheta = SinF(Angle);
|
|
float CosTheta = CosF(Angle);
|
|
float CosValue = 1.0f - CosTheta;
|
|
|
|
Result.Elements[0][0] = (Axis.X * Axis.X * CosValue) + CosTheta;
|
|
Result.Elements[0][1] = (Axis.X * Axis.Y * CosValue) + (Axis.Z * SinTheta);
|
|
Result.Elements[0][2] = (Axis.X * Axis.Z * CosValue) - (Axis.Y * SinTheta);
|
|
|
|
Result.Elements[1][0] = (Axis.Y * Axis.X * CosValue) - (Axis.Z * SinTheta);
|
|
Result.Elements[1][1] = (Axis.Y * Axis.Y * CosValue) + CosTheta;
|
|
Result.Elements[1][2] = (Axis.Y * Axis.Z * CosValue) + (Axis.X * SinTheta);
|
|
|
|
Result.Elements[2][0] = (Axis.Z * Axis.X * CosValue) + (Axis.Y * SinTheta);
|
|
Result.Elements[2][1] = (Axis.Z * Axis.Y * CosValue) - (Axis.X * SinTheta);
|
|
Result.Elements[2][2] = (Axis.Z * Axis.Z * CosValue) + CosTheta;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(Rotate_LH, 1)
|
|
static inline Mat4 Rotate_LH(float Angle, Vec3 Axis)
|
|
{
|
|
ASSERT_COVERED(Rotate_LH);
|
|
/* NOTE(lcf): Matrix will be inverse/transpose of RH. */
|
|
return Rotate_RH(-Angle, Axis);
|
|
}
|
|
|
|
COVERAGE(InvRotate, 1)
|
|
static inline Mat4 InvRotate(Mat4 RotationMatrix)
|
|
{
|
|
ASSERT_COVERED(InvRotate);
|
|
return TransposeM4(RotationMatrix);
|
|
}
|
|
|
|
COVERAGE(Scale, 1)
|
|
static inline Mat4 Scale(Vec3 Scale)
|
|
{
|
|
ASSERT_COVERED(Scale);
|
|
|
|
Mat4 Result = M4D(1.0f);
|
|
Result.Elements[0][0] = Scale.X;
|
|
Result.Elements[1][1] = Scale.Y;
|
|
Result.Elements[2][2] = Scale.Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(InvScale, 1)
|
|
static inline Mat4 InvScale(Mat4 ScaleMatrix)
|
|
{
|
|
ASSERT_COVERED(InvScale);
|
|
|
|
Mat4 Result = ScaleMatrix;
|
|
Result.Elements[0][0] = 1.0f / Result.Elements[0][0];
|
|
Result.Elements[1][1] = 1.0f / Result.Elements[1][1];
|
|
Result.Elements[2][2] = 1.0f / Result.Elements[2][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline Mat4 _LookAt(Vec3 F, Vec3 S, Vec3 U, Vec3 Eye)
|
|
{
|
|
Mat4 Result;
|
|
|
|
Result.Elements[0][0] = S.X;
|
|
Result.Elements[0][1] = U.X;
|
|
Result.Elements[0][2] = -F.X;
|
|
Result.Elements[0][3] = 0.0f;
|
|
|
|
Result.Elements[1][0] = S.Y;
|
|
Result.Elements[1][1] = U.Y;
|
|
Result.Elements[1][2] = -F.Y;
|
|
Result.Elements[1][3] = 0.0f;
|
|
|
|
Result.Elements[2][0] = S.Z;
|
|
Result.Elements[2][1] = U.Z;
|
|
Result.Elements[2][2] = -F.Z;
|
|
Result.Elements[2][3] = 0.0f;
|
|
|
|
Result.Elements[3][0] = -DotV3(S, Eye);
|
|
Result.Elements[3][1] = -DotV3(U, Eye);
|
|
Result.Elements[3][2] = DotV3(F, Eye);
|
|
Result.Elements[3][3] = 1.0f;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(LookAt_RH, 1)
|
|
static inline Mat4 LookAt_RH(Vec3 Eye, Vec3 Center, Vec3 Up)
|
|
{
|
|
ASSERT_COVERED(LookAt_RH);
|
|
|
|
Vec3 F = NormV3(SubV3(Center, Eye));
|
|
Vec3 S = NormV3(Cross(F, Up));
|
|
Vec3 U = Cross(S, F);
|
|
|
|
return _LookAt(F, S, U, Eye);
|
|
}
|
|
|
|
COVERAGE(LookAt_LH, 1)
|
|
static inline Mat4 LookAt_LH(Vec3 Eye, Vec3 Center, Vec3 Up)
|
|
{
|
|
ASSERT_COVERED(LookAt_LH);
|
|
|
|
Vec3 F = NormV3(SubV3(Eye, Center));
|
|
Vec3 S = NormV3(Cross(F, Up));
|
|
Vec3 U = Cross(S, F);
|
|
|
|
return _LookAt(F, S, U, Eye);
|
|
}
|
|
|
|
COVERAGE(InvLookAt, 1)
|
|
static inline Mat4 InvLookAt(Mat4 Matrix)
|
|
{
|
|
ASSERT_COVERED(InvLookAt);
|
|
Mat4 Result;
|
|
|
|
Mat3 Rotation = {0};
|
|
Rotation.Columns[0] = Matrix.Columns[0].XYZ;
|
|
Rotation.Columns[1] = Matrix.Columns[1].XYZ;
|
|
Rotation.Columns[2] = Matrix.Columns[2].XYZ;
|
|
Rotation = TransposeM3(Rotation);
|
|
|
|
Result.Columns[0] = V4V(Rotation.Columns[0], 0.0f);
|
|
Result.Columns[1] = V4V(Rotation.Columns[1], 0.0f);
|
|
Result.Columns[2] = V4V(Rotation.Columns[2], 0.0f);
|
|
Result.Columns[3] = MulV4F(Matrix.Columns[3], -1.0f);
|
|
Result.Elements[3][0] = -1.0f * Matrix.Elements[3][0] /
|
|
(Rotation.Elements[0][0] + Rotation.Elements[0][1] + Rotation.Elements[0][2]);
|
|
Result.Elements[3][1] = -1.0f * Matrix.Elements[3][1] /
|
|
(Rotation.Elements[1][0] + Rotation.Elements[1][1] + Rotation.Elements[1][2]);
|
|
Result.Elements[3][2] = -1.0f * Matrix.Elements[3][2] /
|
|
(Rotation.Elements[2][0] + Rotation.Elements[2][1] + Rotation.Elements[2][2]);
|
|
Result.Elements[3][3] = 1.0f;
|
|
|
|
return Result;
|
|
}
|
|
|
|
/*
|
|
* Quaternion operations
|
|
*/
|
|
|
|
COVERAGE(Q, 1)
|
|
static inline Quat Make_Q(float X, float Y, float Z, float W)
|
|
{
|
|
ASSERT_COVERED(Q);
|
|
|
|
Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_setr_ps(X, Y, Z, W);
|
|
#else
|
|
Result.X = X;
|
|
Result.Y = Y;
|
|
Result.Z = Z;
|
|
Result.W = W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(QV4, 1)
|
|
static inline Quat QV4(Vec4 Vector)
|
|
{
|
|
ASSERT_COVERED(QV4);
|
|
|
|
Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = Vector.SSE;
|
|
#else
|
|
Result.X = Vector.X;
|
|
Result.Y = Vector.Y;
|
|
Result.Z = Vector.Z;
|
|
Result.W = Vector.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(AddQ, 1)
|
|
static inline Quat AddQ(Quat Left, Quat Right)
|
|
{
|
|
ASSERT_COVERED(AddQ);
|
|
|
|
Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_add_ps(Left.SSE, Right.SSE);
|
|
#else
|
|
|
|
Result.X = Left.X + Right.X;
|
|
Result.Y = Left.Y + Right.Y;
|
|
Result.Z = Left.Z + Right.Z;
|
|
Result.W = Left.W + Right.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(SubQ, 1)
|
|
static inline Quat SubQ(Quat Left, Quat Right)
|
|
{
|
|
ASSERT_COVERED(SubQ);
|
|
|
|
Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_sub_ps(Left.SSE, Right.SSE);
|
|
#else
|
|
Result.X = Left.X - Right.X;
|
|
Result.Y = Left.Y - Right.Y;
|
|
Result.Z = Left.Z - Right.Z;
|
|
Result.W = Left.W - Right.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulQ, 1)
|
|
static inline Quat MulQ(Quat Left, Quat Right)
|
|
{
|
|
ASSERT_COVERED(MulQ);
|
|
|
|
Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSEResultOne = _mm_xor_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, _MM_SHUFFLE(0, 0, 0, 0)), _mm_setr_ps(0.f, -0.f, 0.f, -0.f));
|
|
__m128 SSEResultTwo = _mm_shuffle_ps(Right.SSE, Right.SSE, _MM_SHUFFLE(0, 1, 2, 3));
|
|
__m128 SSEResultThree = _mm_mul_ps(SSEResultTwo, SSEResultOne);
|
|
|
|
SSEResultOne = _mm_xor_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, _MM_SHUFFLE(1, 1, 1, 1)) , _mm_setr_ps(0.f, 0.f, -0.f, -0.f));
|
|
SSEResultTwo = _mm_shuffle_ps(Right.SSE, Right.SSE, _MM_SHUFFLE(1, 0, 3, 2));
|
|
SSEResultThree = _mm_add_ps(SSEResultThree, _mm_mul_ps(SSEResultTwo, SSEResultOne));
|
|
|
|
SSEResultOne = _mm_xor_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, _MM_SHUFFLE(2, 2, 2, 2)), _mm_setr_ps(-0.f, 0.f, 0.f, -0.f));
|
|
SSEResultTwo = _mm_shuffle_ps(Right.SSE, Right.SSE, _MM_SHUFFLE(2, 3, 0, 1));
|
|
SSEResultThree = _mm_add_ps(SSEResultThree, _mm_mul_ps(SSEResultTwo, SSEResultOne));
|
|
|
|
SSEResultOne = _mm_shuffle_ps(Left.SSE, Left.SSE, _MM_SHUFFLE(3, 3, 3, 3));
|
|
SSEResultTwo = _mm_shuffle_ps(Right.SSE, Right.SSE, _MM_SHUFFLE(3, 2, 1, 0));
|
|
Result.SSE = _mm_add_ps(SSEResultThree, _mm_mul_ps(SSEResultTwo, SSEResultOne));
|
|
#else
|
|
Result.X = Right.Elements[3] * +Left.Elements[0];
|
|
Result.Y = Right.Elements[2] * -Left.Elements[0];
|
|
Result.Z = Right.Elements[1] * +Left.Elements[0];
|
|
Result.W = Right.Elements[0] * -Left.Elements[0];
|
|
|
|
Result.X += Right.Elements[2] * +Left.Elements[1];
|
|
Result.Y += Right.Elements[3] * +Left.Elements[1];
|
|
Result.Z += Right.Elements[0] * -Left.Elements[1];
|
|
Result.W += Right.Elements[1] * -Left.Elements[1];
|
|
|
|
Result.X += Right.Elements[1] * -Left.Elements[2];
|
|
Result.Y += Right.Elements[0] * +Left.Elements[2];
|
|
Result.Z += Right.Elements[3] * +Left.Elements[2];
|
|
Result.W += Right.Elements[2] * -Left.Elements[2];
|
|
|
|
Result.X += Right.Elements[0] * +Left.Elements[3];
|
|
Result.Y += Right.Elements[1] * +Left.Elements[3];
|
|
Result.Z += Right.Elements[2] * +Left.Elements[3];
|
|
Result.W += Right.Elements[3] * +Left.Elements[3];
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(MulQF, 1)
|
|
static inline Quat MulQF(Quat Left, float Multiplicative)
|
|
{
|
|
ASSERT_COVERED(MulQF);
|
|
|
|
Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 Scalar = _mm_set1_ps(Multiplicative);
|
|
Result.SSE = _mm_mul_ps(Left.SSE, Scalar);
|
|
#else
|
|
Result.X = Left.X * Multiplicative;
|
|
Result.Y = Left.Y * Multiplicative;
|
|
Result.Z = Left.Z * Multiplicative;
|
|
Result.W = Left.W * Multiplicative;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(DivQF, 1)
|
|
static inline Quat DivQF(Quat Left, float Divnd)
|
|
{
|
|
ASSERT_COVERED(DivQF);
|
|
|
|
Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 Scalar = _mm_set1_ps(Divnd);
|
|
Result.SSE = _mm_div_ps(Left.SSE, Scalar);
|
|
#else
|
|
Result.X = Left.X / Divnd;
|
|
Result.Y = Left.Y / Divnd;
|
|
Result.Z = Left.Z / Divnd;
|
|
Result.W = Left.W / Divnd;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(DotQ, 1)
|
|
static inline float DotQ(Quat Left, Quat Right)
|
|
{
|
|
ASSERT_COVERED(DotQ);
|
|
|
|
float Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSEResultOne = _mm_mul_ps(Left.SSE, Right.SSE);
|
|
__m128 SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(2, 3, 0, 1));
|
|
SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo);
|
|
SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(0, 1, 2, 3));
|
|
SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo);
|
|
_mm_store_ss(&Result, SSEResultOne);
|
|
#else
|
|
Result = ((Left.X * Right.X) + (Left.Z * Right.Z)) + ((Left.Y * Right.Y) + (Left.W * Right.W));
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(InvQ, 1)
|
|
static inline Quat InvQ(Quat Left)
|
|
{
|
|
ASSERT_COVERED(InvQ);
|
|
|
|
Quat Result;
|
|
Result.X = -Left.X;
|
|
Result.Y = -Left.Y;
|
|
Result.Z = -Left.Z;
|
|
Result.W = Left.W;
|
|
|
|
return DivQF(Result, (DotQ(Left, Left)));
|
|
}
|
|
|
|
COVERAGE(NormQ, 1)
|
|
static inline Quat NormQ(Quat q)
|
|
{
|
|
ASSERT_COVERED(NormQ);
|
|
|
|
/* NOTE(lcf): Take advantage of SSE implementation in NormV4 */
|
|
Vec4 v = {q.X, q.Y, q.Z, q.W};
|
|
v = NormV4(v);
|
|
|
|
Quat Result = {v.X, v.Y, v.Z, v.W};
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline Quat _MixQ(Quat Left, float MixLeft, Quat Right, float MixRight) {
|
|
Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 ScalarLeft = _mm_set1_ps(MixLeft);
|
|
__m128 ScalarRight = _mm_set1_ps(MixRight);
|
|
__m128 SSEResultOne = _mm_mul_ps(Left.SSE, ScalarLeft);
|
|
__m128 SSEResultTwo = _mm_mul_ps(Right.SSE, ScalarRight);
|
|
Result.SSE = _mm_add_ps(SSEResultOne, SSEResultTwo);
|
|
#else
|
|
Result.X = Left.X*MixLeft + Right.X*MixRight;
|
|
Result.Y = Left.Y*MixLeft + Right.Y*MixRight;
|
|
Result.Z = Left.Z*MixLeft + Right.Z*MixRight;
|
|
Result.W = Left.W*MixLeft + Right.W*MixRight;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(NLerp, 1)
|
|
static inline Quat NLerp(Quat Left, float Time, Quat Right)
|
|
{
|
|
ASSERT_COVERED(NLerp);
|
|
|
|
Quat Result = _MixQ(Left, 1.0f-Time, Right, Time);
|
|
Result = NormQ(Result);
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(SLerp, 1)
|
|
static inline Quat SLerp(Quat Left, float Time, Quat Right)
|
|
{
|
|
ASSERT_COVERED(SLerp);
|
|
|
|
Quat Result;
|
|
|
|
float Cos_Theta = DotQ(Left, Right);
|
|
|
|
if (Cos_Theta < 0.0f) { /* NOTE(lcf): Take shortest path on Hyper-sphere */
|
|
Cos_Theta = -Cos_Theta;
|
|
Right = Make_Q(-Right.X, -Right.Y, -Right.Z, -Right.W);
|
|
}
|
|
|
|
/* NOTE(lcf): Use Normalized Linear interpolation when vectors are roughly not L.I. */
|
|
if (Cos_Theta > 0.9995f) {
|
|
Result = NLerp(Left, Time, Right);
|
|
} else {
|
|
float Angle = ACosF(Cos_Theta);
|
|
float MixLeft = SinF((1.0f - Time) * Angle);
|
|
float MixRight = SinF(Time * Angle);
|
|
|
|
Result = _MixQ(Left, MixLeft, Right, MixRight);
|
|
Result = NormQ(Result);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(QToM4, 1)
|
|
static inline Mat4 QToM4(Quat Left)
|
|
{
|
|
ASSERT_COVERED(QToM4);
|
|
|
|
Mat4 Result;
|
|
|
|
Quat NormalizedQ = NormQ(Left);
|
|
|
|
float XX, YY, ZZ,
|
|
XY, XZ, YZ,
|
|
WX, WY, WZ;
|
|
|
|
XX = NormalizedQ.X * NormalizedQ.X;
|
|
YY = NormalizedQ.Y * NormalizedQ.Y;
|
|
ZZ = NormalizedQ.Z * NormalizedQ.Z;
|
|
XY = NormalizedQ.X * NormalizedQ.Y;
|
|
XZ = NormalizedQ.X * NormalizedQ.Z;
|
|
YZ = NormalizedQ.Y * NormalizedQ.Z;
|
|
WX = NormalizedQ.W * NormalizedQ.X;
|
|
WY = NormalizedQ.W * NormalizedQ.Y;
|
|
WZ = NormalizedQ.W * NormalizedQ.Z;
|
|
|
|
Result.Elements[0][0] = 1.0f - 2.0f * (YY + ZZ);
|
|
Result.Elements[0][1] = 2.0f * (XY + WZ);
|
|
Result.Elements[0][2] = 2.0f * (XZ - WY);
|
|
Result.Elements[0][3] = 0.0f;
|
|
|
|
Result.Elements[1][0] = 2.0f * (XY - WZ);
|
|
Result.Elements[1][1] = 1.0f - 2.0f * (XX + ZZ);
|
|
Result.Elements[1][2] = 2.0f * (YZ + WX);
|
|
Result.Elements[1][3] = 0.0f;
|
|
|
|
Result.Elements[2][0] = 2.0f * (XZ + WY);
|
|
Result.Elements[2][1] = 2.0f * (YZ - WX);
|
|
Result.Elements[2][2] = 1.0f - 2.0f * (XX + YY);
|
|
Result.Elements[2][3] = 0.0f;
|
|
|
|
Result.Elements[3][0] = 0.0f;
|
|
Result.Elements[3][1] = 0.0f;
|
|
Result.Elements[3][2] = 0.0f;
|
|
Result.Elements[3][3] = 1.0f;
|
|
|
|
return Result;
|
|
}
|
|
|
|
// This method taken from Mike Day at Insomniac Games.
|
|
// https://d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2015/01/matrix-to-quat.pdf
|
|
//
|
|
// Note that as mentioned at the top of the paper, the paper assumes the matrix
|
|
// would be *post*-multiplied to a vector to rotate it, meaning the matrix is
|
|
// the transpose of what we're dealing with. But, because our matrices are
|
|
// stored in column-major order, the indices *appear* to match the paper.
|
|
//
|
|
// For example, m12 in the paper is row 1, column 2. We need to transpose it to
|
|
// row 2, column 1. But, because the column comes first when referencing
|
|
// elements, it looks like M.Elements[1][2].
|
|
//
|
|
// Don't be confused! Or if you must be confused, at least trust this
|
|
// comment. :)
|
|
COVERAGE(M4ToQ_RH, 4)
|
|
static inline Quat M4ToQ_RH(Mat4 M)
|
|
{
|
|
float T;
|
|
Quat Q;
|
|
|
|
if (M.Elements[2][2] < 0.0f) {
|
|
if (M.Elements[0][0] > M.Elements[1][1]) {
|
|
ASSERT_COVERED(M4ToQ_RH);
|
|
|
|
T = 1 + M.Elements[0][0] - M.Elements[1][1] - M.Elements[2][2];
|
|
Q = Make_Q(
|
|
T,
|
|
M.Elements[0][1] + M.Elements[1][0],
|
|
M.Elements[2][0] + M.Elements[0][2],
|
|
M.Elements[1][2] - M.Elements[2][1]
|
|
);
|
|
} else {
|
|
ASSERT_COVERED(M4ToQ_RH);
|
|
|
|
T = 1 - M.Elements[0][0] + M.Elements[1][1] - M.Elements[2][2];
|
|
Q = Make_Q(
|
|
M.Elements[0][1] + M.Elements[1][0],
|
|
T,
|
|
M.Elements[1][2] + M.Elements[2][1],
|
|
M.Elements[2][0] - M.Elements[0][2]
|
|
);
|
|
}
|
|
} else {
|
|
if (M.Elements[0][0] < -M.Elements[1][1]) {
|
|
ASSERT_COVERED(M4ToQ_RH);
|
|
|
|
T = 1 - M.Elements[0][0] - M.Elements[1][1] + M.Elements[2][2];
|
|
Q = Make_Q(
|
|
M.Elements[2][0] + M.Elements[0][2],
|
|
M.Elements[1][2] + M.Elements[2][1],
|
|
T,
|
|
M.Elements[0][1] - M.Elements[1][0]
|
|
);
|
|
} else {
|
|
ASSERT_COVERED(M4ToQ_RH);
|
|
|
|
T = 1 + M.Elements[0][0] + M.Elements[1][1] + M.Elements[2][2];
|
|
Q = Make_Q(
|
|
M.Elements[1][2] - M.Elements[2][1],
|
|
M.Elements[2][0] - M.Elements[0][2],
|
|
M.Elements[0][1] - M.Elements[1][0],
|
|
T
|
|
);
|
|
}
|
|
}
|
|
|
|
Q = MulQF(Q, 0.5f / SqrtF(T));
|
|
|
|
return Q;
|
|
}
|
|
|
|
COVERAGE(M4ToQ_LH, 4)
|
|
static inline Quat M4ToQ_LH(Mat4 M)
|
|
{
|
|
float T;
|
|
Quat Q;
|
|
|
|
if (M.Elements[2][2] < 0.0f) {
|
|
if (M.Elements[0][0] > M.Elements[1][1]) {
|
|
ASSERT_COVERED(M4ToQ_LH);
|
|
|
|
T = 1 + M.Elements[0][0] - M.Elements[1][1] - M.Elements[2][2];
|
|
Q = Make_Q(
|
|
T,
|
|
M.Elements[0][1] + M.Elements[1][0],
|
|
M.Elements[2][0] + M.Elements[0][2],
|
|
M.Elements[2][1] - M.Elements[1][2]
|
|
);
|
|
} else {
|
|
ASSERT_COVERED(M4ToQ_LH);
|
|
|
|
T = 1 - M.Elements[0][0] + M.Elements[1][1] - M.Elements[2][2];
|
|
Q = Make_Q(
|
|
M.Elements[0][1] + M.Elements[1][0],
|
|
T,
|
|
M.Elements[1][2] + M.Elements[2][1],
|
|
M.Elements[0][2] - M.Elements[2][0]
|
|
);
|
|
}
|
|
} else {
|
|
if (M.Elements[0][0] < -M.Elements[1][1]) {
|
|
ASSERT_COVERED(M4ToQ_LH);
|
|
|
|
T = 1 - M.Elements[0][0] - M.Elements[1][1] + M.Elements[2][2];
|
|
Q = Make_Q(
|
|
M.Elements[2][0] + M.Elements[0][2],
|
|
M.Elements[1][2] + M.Elements[2][1],
|
|
T,
|
|
M.Elements[1][0] - M.Elements[0][1]
|
|
);
|
|
} else {
|
|
ASSERT_COVERED(M4ToQ_LH);
|
|
|
|
T = 1 + M.Elements[0][0] + M.Elements[1][1] + M.Elements[2][2];
|
|
Q = Make_Q(
|
|
M.Elements[2][1] - M.Elements[1][2],
|
|
M.Elements[0][2] - M.Elements[2][0],
|
|
M.Elements[1][0] - M.Elements[0][2],
|
|
T
|
|
);
|
|
}
|
|
}
|
|
|
|
Q = MulQF(Q, 0.5f / SqrtF(T));
|
|
|
|
return Q;
|
|
}
|
|
|
|
|
|
COVERAGE(QFromAxisAngle_RH, 1)
|
|
static inline Quat QFromAxisAngle_RH(Vec3 Axis, float AngleOfRotation)
|
|
{
|
|
ASSERT_COVERED(QFromAxisAngle_RH);
|
|
|
|
Quat Result;
|
|
|
|
Vec3 AxisNormalized = NormV3(Axis);
|
|
float SineOfRotation = SinF(AngleOfRotation / 2.0f);
|
|
|
|
Result.XYZ = MulV3F(AxisNormalized, SineOfRotation);
|
|
Result.W = CosF(AngleOfRotation / 2.0f);
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(QFromAxisAngle_LH, 1)
|
|
static inline Quat QFromAxisAngle_LH(Vec3 Axis, float AngleOfRotation)
|
|
{
|
|
ASSERT_COVERED(QFromAxisAngle_LH);
|
|
|
|
return QFromAxisAngle_RH(Axis, -AngleOfRotation);
|
|
}
|
|
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
|
|
COVERAGE(LenV2CPP, 1)
|
|
static inline float Len(Vec2 A)
|
|
{
|
|
ASSERT_COVERED(LenV2CPP);
|
|
return LenV2(A);
|
|
}
|
|
|
|
COVERAGE(LenV3CPP, 1)
|
|
static inline float Len(Vec3 A)
|
|
{
|
|
ASSERT_COVERED(LenV3CPP);
|
|
return LenV3(A);
|
|
}
|
|
|
|
COVERAGE(LenV4CPP, 1)
|
|
static inline float Len(Vec4 A)
|
|
{
|
|
ASSERT_COVERED(LenV4CPP);
|
|
return LenV4(A);
|
|
}
|
|
|
|
COVERAGE(LenSqrV2CPP, 1)
|
|
static inline float LenSqr(Vec2 A)
|
|
{
|
|
ASSERT_COVERED(LenSqrV2CPP);
|
|
return LenSqrV2(A);
|
|
}
|
|
|
|
COVERAGE(LenSqrV3CPP, 1)
|
|
static inline float LenSqr(Vec3 A)
|
|
{
|
|
ASSERT_COVERED(LenSqrV3CPP);
|
|
return LenSqrV3(A);
|
|
}
|
|
|
|
COVERAGE(LenSqrV4CPP, 1)
|
|
static inline float LenSqr(Vec4 A)
|
|
{
|
|
ASSERT_COVERED(LenSqrV4CPP);
|
|
return LenSqrV4(A);
|
|
}
|
|
|
|
COVERAGE(NormV2CPP, 1)
|
|
static inline Vec2 Norm(Vec2 A)
|
|
{
|
|
ASSERT_COVERED(NormV2CPP);
|
|
return NormV2(A);
|
|
}
|
|
|
|
COVERAGE(NormV3CPP, 1)
|
|
static inline Vec3 Norm(Vec3 A)
|
|
{
|
|
ASSERT_COVERED(NormV3CPP);
|
|
return NormV3(A);
|
|
}
|
|
|
|
COVERAGE(NormV4CPP, 1)
|
|
static inline Vec4 Norm(Vec4 A)
|
|
{
|
|
ASSERT_COVERED(NormV4CPP);
|
|
return NormV4(A);
|
|
}
|
|
|
|
COVERAGE(NormQCPP, 1)
|
|
static inline Quat Norm(Quat A)
|
|
{
|
|
ASSERT_COVERED(NormQCPP);
|
|
return NormQ(A);
|
|
}
|
|
|
|
COVERAGE(DotV2CPP, 1)
|
|
static inline float Dot(Vec2 Left, Vec2 VecTwo)
|
|
{
|
|
ASSERT_COVERED(DotV2CPP);
|
|
return DotV2(Left, VecTwo);
|
|
}
|
|
|
|
COVERAGE(DotV3CPP, 1)
|
|
static inline float Dot(Vec3 Left, Vec3 VecTwo)
|
|
{
|
|
ASSERT_COVERED(DotV3CPP);
|
|
return DotV3(Left, VecTwo);
|
|
}
|
|
|
|
COVERAGE(DotV4CPP, 1)
|
|
static inline float Dot(Vec4 Left, Vec4 VecTwo)
|
|
{
|
|
ASSERT_COVERED(DotV4CPP);
|
|
return DotV4(Left, VecTwo);
|
|
}
|
|
|
|
COVERAGE(LerpV2CPP, 1)
|
|
static inline Vec2 Lerp(Vec2 Left, float Time, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(LerpV2CPP);
|
|
return LerpV2(Left, Time, Right);
|
|
}
|
|
|
|
COVERAGE(LerpV3CPP, 1)
|
|
static inline Vec3 Lerp(Vec3 Left, float Time, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(LerpV3CPP);
|
|
return LerpV3(Left, Time, Right);
|
|
}
|
|
|
|
COVERAGE(LerpV4CPP, 1)
|
|
static inline Vec4 Lerp(Vec4 Left, float Time, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(LerpV4CPP);
|
|
return LerpV4(Left, Time, Right);
|
|
}
|
|
|
|
COVERAGE(TransposeM2CPP, 1)
|
|
static inline Mat2 Transpose(Mat2 Matrix)
|
|
{
|
|
ASSERT_COVERED(TransposeM2CPP);
|
|
return TransposeM2(Matrix);
|
|
}
|
|
|
|
COVERAGE(TransposeM3CPP, 1)
|
|
static inline Mat3 Transpose(Mat3 Matrix)
|
|
{
|
|
ASSERT_COVERED(TransposeM3CPP);
|
|
return TransposeM3(Matrix);
|
|
}
|
|
|
|
COVERAGE(TransposeM4CPP, 1)
|
|
static inline Mat4 Transpose(Mat4 Matrix)
|
|
{
|
|
ASSERT_COVERED(TransposeM4CPP);
|
|
return TransposeM4(Matrix);
|
|
}
|
|
|
|
COVERAGE(DeterminantM2CPP, 1)
|
|
static inline float Determinant(Mat2 Matrix)
|
|
{
|
|
ASSERT_COVERED(DeterminantM2CPP);
|
|
return DeterminantM2(Matrix);
|
|
}
|
|
|
|
COVERAGE(DeterminantM3CPP, 1)
|
|
static inline float Determinant(Mat3 Matrix)
|
|
{
|
|
ASSERT_COVERED(DeterminantM3CPP);
|
|
return DeterminantM3(Matrix);
|
|
}
|
|
|
|
COVERAGE(DeterminantM4CPP, 1)
|
|
static inline float Determinant(Mat4 Matrix)
|
|
{
|
|
ASSERT_COVERED(DeterminantM4CPP);
|
|
return DeterminantM4(Matrix);
|
|
}
|
|
|
|
COVERAGE(InvGeneralM2CPP, 1)
|
|
static inline Mat2 InvGeneral(Mat2 Matrix)
|
|
{
|
|
ASSERT_COVERED(InvGeneralM2CPP);
|
|
return InvGeneralM2(Matrix);
|
|
}
|
|
|
|
COVERAGE(InvGeneralM3CPP, 1)
|
|
static inline Mat3 InvGeneral(Mat3 Matrix)
|
|
{
|
|
ASSERT_COVERED(InvGeneralM3CPP);
|
|
return InvGeneralM3(Matrix);
|
|
}
|
|
|
|
COVERAGE(InvGeneralM4CPP, 1)
|
|
static inline Mat4 InvGeneral(Mat4 Matrix)
|
|
{
|
|
ASSERT_COVERED(InvGeneralM4CPP);
|
|
return InvGeneralM4(Matrix);
|
|
}
|
|
|
|
COVERAGE(DotQCPP, 1)
|
|
static inline float Dot(Quat QuatOne, Quat QuatTwo)
|
|
{
|
|
ASSERT_COVERED(DotQCPP);
|
|
return DotQ(QuatOne, QuatTwo);
|
|
}
|
|
|
|
COVERAGE(AddV2CPP, 1)
|
|
static inline Vec2 Add(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(AddV2CPP);
|
|
return AddV2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddV3CPP, 1)
|
|
static inline Vec3 Add(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(AddV3CPP);
|
|
return AddV3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddV4CPP, 1)
|
|
static inline Vec4 Add(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(AddV4CPP);
|
|
return AddV4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddM2CPP, 1)
|
|
static inline Mat2 Add(Mat2 Left, Mat2 Right)
|
|
{
|
|
ASSERT_COVERED(AddM2CPP);
|
|
return AddM2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddM3CPP, 1)
|
|
static inline Mat3 Add(Mat3 Left, Mat3 Right)
|
|
{
|
|
ASSERT_COVERED(AddM3CPP);
|
|
return AddM3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddM4CPP, 1)
|
|
static inline Mat4 Add(Mat4 Left, Mat4 Right)
|
|
{
|
|
ASSERT_COVERED(AddM4CPP);
|
|
return AddM4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddQCPP, 1)
|
|
static inline Quat Add(Quat Left, Quat Right)
|
|
{
|
|
ASSERT_COVERED(AddQCPP);
|
|
return AddQ(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubV2CPP, 1)
|
|
static inline Vec2 Sub(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(SubV2CPP);
|
|
return SubV2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubV3CPP, 1)
|
|
static inline Vec3 Sub(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(SubV3CPP);
|
|
return SubV3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubV4CPP, 1)
|
|
static inline Vec4 Sub(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(SubV4CPP);
|
|
return SubV4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubM2CPP, 1)
|
|
static inline Mat2 Sub(Mat2 Left, Mat2 Right)
|
|
{
|
|
ASSERT_COVERED(SubM2CPP);
|
|
return SubM2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubM3CPP, 1)
|
|
static inline Mat3 Sub(Mat3 Left, Mat3 Right)
|
|
{
|
|
ASSERT_COVERED(SubM3CPP);
|
|
return SubM3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubM4CPP, 1)
|
|
static inline Mat4 Sub(Mat4 Left, Mat4 Right)
|
|
{
|
|
ASSERT_COVERED(SubM4CPP);
|
|
return SubM4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubQCPP, 1)
|
|
static inline Quat Sub(Quat Left, Quat Right)
|
|
{
|
|
ASSERT_COVERED(SubQCPP);
|
|
return SubQ(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulV2CPP, 1)
|
|
static inline Vec2 Mul(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(MulV2CPP);
|
|
return MulV2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulV2FCPP, 1)
|
|
static inline Vec2 Mul(Vec2 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulV2FCPP);
|
|
return MulV2F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulV3CPP, 1)
|
|
static inline Vec3 Mul(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(MulV3CPP);
|
|
return MulV3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulV3FCPP, 1)
|
|
static inline Vec3 Mul(Vec3 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulV3FCPP);
|
|
return MulV3F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulV4CPP, 1)
|
|
static inline Vec4 Mul(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(MulV4CPP);
|
|
return MulV4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulV4FCPP, 1)
|
|
static inline Vec4 Mul(Vec4 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulV4FCPP);
|
|
return MulV4F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulM2CPP, 1)
|
|
static inline Mat2 Mul(Mat2 Left, Mat2 Right)
|
|
{
|
|
ASSERT_COVERED(MulM2CPP);
|
|
return MulM2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulM3CPP, 1)
|
|
static inline Mat3 Mul(Mat3 Left, Mat3 Right)
|
|
{
|
|
ASSERT_COVERED(MulM3CPP);
|
|
return MulM3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulM4CPP, 1)
|
|
static inline Mat4 Mul(Mat4 Left, Mat4 Right)
|
|
{
|
|
ASSERT_COVERED(MulM4CPP);
|
|
return MulM4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulM2FCPP, 1)
|
|
static inline Mat2 Mul(Mat2 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulM2FCPP);
|
|
return MulM2F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulM3FCPP, 1)
|
|
static inline Mat3 Mul(Mat3 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulM3FCPP);
|
|
return MulM3F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulM4FCPP, 1)
|
|
static inline Mat4 Mul(Mat4 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulM4FCPP);
|
|
return MulM4F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulM2V2CPP, 1)
|
|
static inline Vec2 Mul(Mat2 Matrix, Vec2 Vector)
|
|
{
|
|
ASSERT_COVERED(MulM2V2CPP);
|
|
return MulM2V2(Matrix, Vector);
|
|
}
|
|
|
|
COVERAGE(MulM3V3CPP, 1)
|
|
static inline Vec3 Mul(Mat3 Matrix, Vec3 Vector)
|
|
{
|
|
ASSERT_COVERED(MulM3V3CPP);
|
|
return MulM3V3(Matrix, Vector);
|
|
}
|
|
|
|
COVERAGE(MulM4V4CPP, 1)
|
|
static inline Vec4 Mul(Mat4 Matrix, Vec4 Vector)
|
|
{
|
|
ASSERT_COVERED(MulM4V4CPP);
|
|
return MulM4V4(Matrix, Vector);
|
|
}
|
|
|
|
COVERAGE(MulQCPP, 1)
|
|
static inline Quat Mul(Quat Left, Quat Right)
|
|
{
|
|
ASSERT_COVERED(MulQCPP);
|
|
return MulQ(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulQFCPP, 1)
|
|
static inline Quat Mul(Quat Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulQFCPP);
|
|
return MulQF(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivV2CPP, 1)
|
|
static inline Vec2 Div(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(DivV2CPP);
|
|
return DivV2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivV2FCPP, 1)
|
|
static inline Vec2 Div(Vec2 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivV2FCPP);
|
|
return DivV2F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivV3CPP, 1)
|
|
static inline Vec3 Div(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(DivV3CPP);
|
|
return DivV3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivV3FCPP, 1)
|
|
static inline Vec3 Div(Vec3 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivV3FCPP);
|
|
return DivV3F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivV4CPP, 1)
|
|
static inline Vec4 Div(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(DivV4CPP);
|
|
return DivV4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivV4FCPP, 1)
|
|
static inline Vec4 Div(Vec4 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivV4FCPP);
|
|
return DivV4F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivM2FCPP, 1)
|
|
static inline Mat2 Div(Mat2 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivM2FCPP);
|
|
return DivM2F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivM3FCPP, 1)
|
|
static inline Mat3 Div(Mat3 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivM3FCPP);
|
|
return DivM3F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivM4FCPP, 1)
|
|
static inline Mat4 Div(Mat4 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivM4FCPP);
|
|
return DivM4F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivQFCPP, 1)
|
|
static inline Quat Div(Quat Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivQFCPP);
|
|
return DivQF(Left, Right);
|
|
}
|
|
|
|
COVERAGE(EqV2CPP, 1)
|
|
static inline Bool Eq(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(EqV2CPP);
|
|
return EqV2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(EqV3CPP, 1)
|
|
static inline Bool Eq(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(EqV3CPP);
|
|
return EqV3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(EqV4CPP, 1)
|
|
static inline Bool Eq(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(EqV4CPP);
|
|
return EqV4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddV2Op, 1)
|
|
static inline Vec2 operator+(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(AddV2Op);
|
|
return AddV2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddV3Op, 1)
|
|
static inline Vec3 operator+(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(AddV3Op);
|
|
return AddV3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddV4Op, 1)
|
|
static inline Vec4 operator+(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(AddV4Op);
|
|
return AddV4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddM2Op, 1)
|
|
static inline Mat2 operator+(Mat2 Left, Mat2 Right)
|
|
{
|
|
ASSERT_COVERED(AddM2Op);
|
|
return AddM2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddM3Op, 1)
|
|
static inline Mat3 operator+(Mat3 Left, Mat3 Right)
|
|
{
|
|
ASSERT_COVERED(AddM3Op);
|
|
return AddM3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddM4Op, 1)
|
|
static inline Mat4 operator+(Mat4 Left, Mat4 Right)
|
|
{
|
|
ASSERT_COVERED(AddM4Op);
|
|
return AddM4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddQOp, 1)
|
|
static inline Quat operator+(Quat Left, Quat Right)
|
|
{
|
|
ASSERT_COVERED(AddQOp);
|
|
return AddQ(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubV2Op, 1)
|
|
static inline Vec2 operator-(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(SubV2Op);
|
|
return SubV2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubV3Op, 1)
|
|
static inline Vec3 operator-(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(SubV3Op);
|
|
return SubV3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubV4Op, 1)
|
|
static inline Vec4 operator-(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(SubV4Op);
|
|
return SubV4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubM2Op, 1)
|
|
static inline Mat2 operator-(Mat2 Left, Mat2 Right)
|
|
{
|
|
ASSERT_COVERED(SubM2Op);
|
|
return SubM2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubM3Op, 1)
|
|
static inline Mat3 operator-(Mat3 Left, Mat3 Right)
|
|
{
|
|
ASSERT_COVERED(SubM3Op);
|
|
return SubM3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubM4Op, 1)
|
|
static inline Mat4 operator-(Mat4 Left, Mat4 Right)
|
|
{
|
|
ASSERT_COVERED(SubM4Op);
|
|
return SubM4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(SubQOp, 1)
|
|
static inline Quat operator-(Quat Left, Quat Right)
|
|
{
|
|
ASSERT_COVERED(SubQOp);
|
|
return SubQ(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulV2Op, 1)
|
|
static inline Vec2 operator*(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(MulV2Op);
|
|
return MulV2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulV3Op, 1)
|
|
static inline Vec3 operator*(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(MulV3Op);
|
|
return MulV3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulV4Op, 1)
|
|
static inline Vec4 operator*(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(MulV4Op);
|
|
return MulV4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulM2Op, 1)
|
|
static inline Mat2 operator*(Mat2 Left, Mat2 Right)
|
|
{
|
|
ASSERT_COVERED(MulM2Op);
|
|
return MulM2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulM3Op, 1)
|
|
static inline Mat3 operator*(Mat3 Left, Mat3 Right)
|
|
{
|
|
ASSERT_COVERED(MulM3Op);
|
|
return MulM3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulM4Op, 1)
|
|
static inline Mat4 operator*(Mat4 Left, Mat4 Right)
|
|
{
|
|
ASSERT_COVERED(MulM4Op);
|
|
return MulM4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulQOp, 1)
|
|
static inline Quat operator*(Quat Left, Quat Right)
|
|
{
|
|
ASSERT_COVERED(MulQOp);
|
|
return MulQ(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulV2FOp, 1)
|
|
static inline Vec2 operator*(Vec2 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulV2FOp);
|
|
return MulV2F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulV3FOp, 1)
|
|
static inline Vec3 operator*(Vec3 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulV3FOp);
|
|
return MulV3F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulV4FOp, 1)
|
|
static inline Vec4 operator*(Vec4 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulV4FOp);
|
|
return MulV4F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulM2FOp, 1)
|
|
static inline Mat2 operator*(Mat2 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulM2FOp);
|
|
return MulM2F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulM3FOp, 1)
|
|
static inline Mat3 operator*(Mat3 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulM3FOp);
|
|
return MulM3F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulM4FOp, 1)
|
|
static inline Mat4 operator*(Mat4 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulM4FOp);
|
|
return MulM4F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulQFOp, 1)
|
|
static inline Quat operator*(Quat Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulQFOp);
|
|
return MulQF(Left, Right);
|
|
}
|
|
|
|
COVERAGE(MulV2FOpLeft, 1)
|
|
static inline Vec2 operator*(float Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(MulV2FOpLeft);
|
|
return MulV2F(Right, Left);
|
|
}
|
|
|
|
COVERAGE(MulV3FOpLeft, 1)
|
|
static inline Vec3 operator*(float Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(MulV3FOpLeft);
|
|
return MulV3F(Right, Left);
|
|
}
|
|
|
|
COVERAGE(MulV4FOpLeft, 1)
|
|
static inline Vec4 operator*(float Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(MulV4FOpLeft);
|
|
return MulV4F(Right, Left);
|
|
}
|
|
|
|
COVERAGE(MulM2FOpLeft, 1)
|
|
static inline Mat2 operator*(float Left, Mat2 Right)
|
|
{
|
|
ASSERT_COVERED(MulM2FOpLeft);
|
|
return MulM2F(Right, Left);
|
|
}
|
|
|
|
COVERAGE(MulM3FOpLeft, 1)
|
|
static inline Mat3 operator*(float Left, Mat3 Right)
|
|
{
|
|
ASSERT_COVERED(MulM3FOpLeft);
|
|
return MulM3F(Right, Left);
|
|
}
|
|
|
|
COVERAGE(MulM4FOpLeft, 1)
|
|
static inline Mat4 operator*(float Left, Mat4 Right)
|
|
{
|
|
ASSERT_COVERED(MulM4FOpLeft);
|
|
return MulM4F(Right, Left);
|
|
}
|
|
|
|
COVERAGE(MulQFOpLeft, 1)
|
|
static inline Quat operator*(float Left, Quat Right)
|
|
{
|
|
ASSERT_COVERED(MulQFOpLeft);
|
|
return MulQF(Right, Left);
|
|
}
|
|
|
|
COVERAGE(MulM2V2Op, 1)
|
|
static inline Vec2 operator*(Mat2 Matrix, Vec2 Vector)
|
|
{
|
|
ASSERT_COVERED(MulM2V2Op);
|
|
return MulM2V2(Matrix, Vector);
|
|
}
|
|
|
|
COVERAGE(MulM3V3Op, 1)
|
|
static inline Vec3 operator*(Mat3 Matrix, Vec3 Vector)
|
|
{
|
|
ASSERT_COVERED(MulM3V3Op);
|
|
return MulM3V3(Matrix, Vector);
|
|
}
|
|
|
|
COVERAGE(MulM4V4Op, 1)
|
|
static inline Vec4 operator*(Mat4 Matrix, Vec4 Vector)
|
|
{
|
|
ASSERT_COVERED(MulM4V4Op);
|
|
return MulM4V4(Matrix, Vector);
|
|
}
|
|
|
|
COVERAGE(DivV2Op, 1)
|
|
static inline Vec2 operator/(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(DivV2Op);
|
|
return DivV2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivV3Op, 1)
|
|
static inline Vec3 operator/(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(DivV3Op);
|
|
return DivV3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivV4Op, 1)
|
|
static inline Vec4 operator/(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(DivV4Op);
|
|
return DivV4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivV2FOp, 1)
|
|
static inline Vec2 operator/(Vec2 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivV2FOp);
|
|
return DivV2F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivV3FOp, 1)
|
|
static inline Vec3 operator/(Vec3 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivV3FOp);
|
|
return DivV3F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivV4FOp, 1)
|
|
static inline Vec4 operator/(Vec4 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivV4FOp);
|
|
return DivV4F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivM4FOp, 1)
|
|
static inline Mat4 operator/(Mat4 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivM4FOp);
|
|
return DivM4F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivM3FOp, 1)
|
|
static inline Mat3 operator/(Mat3 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivM3FOp);
|
|
return DivM3F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivM2FOp, 1)
|
|
static inline Mat2 operator/(Mat2 Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivM2FOp);
|
|
return DivM2F(Left, Right);
|
|
}
|
|
|
|
COVERAGE(DivQFOp, 1)
|
|
static inline Quat operator/(Quat Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivQFOp);
|
|
return DivQF(Left, Right);
|
|
}
|
|
|
|
COVERAGE(AddV2Assign, 1)
|
|
static inline Vec2 &operator+=(Vec2 &Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(AddV2Assign);
|
|
return Left = Left + Right;
|
|
}
|
|
|
|
COVERAGE(AddV3Assign, 1)
|
|
static inline Vec3 &operator+=(Vec3 &Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(AddV3Assign);
|
|
return Left = Left + Right;
|
|
}
|
|
|
|
COVERAGE(AddV4Assign, 1)
|
|
static inline Vec4 &operator+=(Vec4 &Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(AddV4Assign);
|
|
return Left = Left + Right;
|
|
}
|
|
|
|
COVERAGE(AddM2Assign, 1)
|
|
static inline Mat2 &operator+=(Mat2 &Left, Mat2 Right)
|
|
{
|
|
ASSERT_COVERED(AddM2Assign);
|
|
return Left = Left + Right;
|
|
}
|
|
|
|
COVERAGE(AddM3Assign, 1)
|
|
static inline Mat3 &operator+=(Mat3 &Left, Mat3 Right)
|
|
{
|
|
ASSERT_COVERED(AddM3Assign);
|
|
return Left = Left + Right;
|
|
}
|
|
|
|
COVERAGE(AddM4Assign, 1)
|
|
static inline Mat4 &operator+=(Mat4 &Left, Mat4 Right)
|
|
{
|
|
ASSERT_COVERED(AddM4Assign);
|
|
return Left = Left + Right;
|
|
}
|
|
|
|
COVERAGE(AddQAssign, 1)
|
|
static inline Quat &operator+=(Quat &Left, Quat Right)
|
|
{
|
|
ASSERT_COVERED(AddQAssign);
|
|
return Left = Left + Right;
|
|
}
|
|
|
|
COVERAGE(SubV2Assign, 1)
|
|
static inline Vec2 &operator-=(Vec2 &Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(SubV2Assign);
|
|
return Left = Left - Right;
|
|
}
|
|
|
|
COVERAGE(SubV3Assign, 1)
|
|
static inline Vec3 &operator-=(Vec3 &Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(SubV3Assign);
|
|
return Left = Left - Right;
|
|
}
|
|
|
|
COVERAGE(SubV4Assign, 1)
|
|
static inline Vec4 &operator-=(Vec4 &Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(SubV4Assign);
|
|
return Left = Left - Right;
|
|
}
|
|
|
|
COVERAGE(SubM2Assign, 1)
|
|
static inline Mat2 &operator-=(Mat2 &Left, Mat2 Right)
|
|
{
|
|
ASSERT_COVERED(SubM2Assign);
|
|
return Left = Left - Right;
|
|
}
|
|
|
|
COVERAGE(SubM3Assign, 1)
|
|
static inline Mat3 &operator-=(Mat3 &Left, Mat3 Right)
|
|
{
|
|
ASSERT_COVERED(SubM3Assign);
|
|
return Left = Left - Right;
|
|
}
|
|
|
|
COVERAGE(SubM4Assign, 1)
|
|
static inline Mat4 &operator-=(Mat4 &Left, Mat4 Right)
|
|
{
|
|
ASSERT_COVERED(SubM4Assign);
|
|
return Left = Left - Right;
|
|
}
|
|
|
|
COVERAGE(SubQAssign, 1)
|
|
static inline Quat &operator-=(Quat &Left, Quat Right)
|
|
{
|
|
ASSERT_COVERED(SubQAssign);
|
|
return Left = Left - Right;
|
|
}
|
|
|
|
COVERAGE(MulV2Assign, 1)
|
|
static inline Vec2 &operator*=(Vec2 &Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(MulV2Assign);
|
|
return Left = Left * Right;
|
|
}
|
|
|
|
COVERAGE(MulV3Assign, 1)
|
|
static inline Vec3 &operator*=(Vec3 &Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(MulV3Assign);
|
|
return Left = Left * Right;
|
|
}
|
|
|
|
COVERAGE(MulV4Assign, 1)
|
|
static inline Vec4 &operator*=(Vec4 &Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(MulV4Assign);
|
|
return Left = Left * Right;
|
|
}
|
|
|
|
COVERAGE(MulV2FAssign, 1)
|
|
static inline Vec2 &operator*=(Vec2 &Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulV2FAssign);
|
|
return Left = Left * Right;
|
|
}
|
|
|
|
COVERAGE(MulV3FAssign, 1)
|
|
static inline Vec3 &operator*=(Vec3 &Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulV3FAssign);
|
|
return Left = Left * Right;
|
|
}
|
|
|
|
COVERAGE(MulV4FAssign, 1)
|
|
static inline Vec4 &operator*=(Vec4 &Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulV4FAssign);
|
|
return Left = Left * Right;
|
|
}
|
|
|
|
COVERAGE(MulM2FAssign, 1)
|
|
static inline Mat2 &operator*=(Mat2 &Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulM2FAssign);
|
|
return Left = Left * Right;
|
|
}
|
|
|
|
COVERAGE(MulM3FAssign, 1)
|
|
static inline Mat3 &operator*=(Mat3 &Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulM3FAssign);
|
|
return Left = Left * Right;
|
|
}
|
|
|
|
COVERAGE(MulM4FAssign, 1)
|
|
static inline Mat4 &operator*=(Mat4 &Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulM4FAssign);
|
|
return Left = Left * Right;
|
|
}
|
|
|
|
COVERAGE(MulQFAssign, 1)
|
|
static inline Quat &operator*=(Quat &Left, float Right)
|
|
{
|
|
ASSERT_COVERED(MulQFAssign);
|
|
return Left = Left * Right;
|
|
}
|
|
|
|
COVERAGE(DivV2Assign, 1)
|
|
static inline Vec2 &operator/=(Vec2 &Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(DivV2Assign);
|
|
return Left = Left / Right;
|
|
}
|
|
|
|
COVERAGE(DivV3Assign, 1)
|
|
static inline Vec3 &operator/=(Vec3 &Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(DivV3Assign);
|
|
return Left = Left / Right;
|
|
}
|
|
|
|
COVERAGE(DivV4Assign, 1)
|
|
static inline Vec4 &operator/=(Vec4 &Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(DivV4Assign);
|
|
return Left = Left / Right;
|
|
}
|
|
|
|
COVERAGE(DivV2FAssign, 1)
|
|
static inline Vec2 &operator/=(Vec2 &Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivV2FAssign);
|
|
return Left = Left / Right;
|
|
}
|
|
|
|
COVERAGE(DivV3FAssign, 1)
|
|
static inline Vec3 &operator/=(Vec3 &Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivV3FAssign);
|
|
return Left = Left / Right;
|
|
}
|
|
|
|
COVERAGE(DivV4FAssign, 1)
|
|
static inline Vec4 &operator/=(Vec4 &Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivV4FAssign);
|
|
return Left = Left / Right;
|
|
}
|
|
|
|
COVERAGE(DivM4FAssign, 1)
|
|
static inline Mat4 &operator/=(Mat4 &Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivM4FAssign);
|
|
return Left = Left / Right;
|
|
}
|
|
|
|
COVERAGE(DivQFAssign, 1)
|
|
static inline Quat &operator/=(Quat &Left, float Right)
|
|
{
|
|
ASSERT_COVERED(DivQFAssign);
|
|
return Left = Left / Right;
|
|
}
|
|
|
|
COVERAGE(EqV2Op, 1)
|
|
static inline Bool operator==(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(EqV2Op);
|
|
return EqV2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(EqV3Op, 1)
|
|
static inline Bool operator==(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(EqV3Op);
|
|
return EqV3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(EqV4Op, 1)
|
|
static inline Bool operator==(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(EqV4Op);
|
|
return EqV4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(EqV2OpNot, 1)
|
|
static inline Bool operator!=(Vec2 Left, Vec2 Right)
|
|
{
|
|
ASSERT_COVERED(EqV2OpNot);
|
|
return !EqV2(Left, Right);
|
|
}
|
|
|
|
COVERAGE(EqV3OpNot, 1)
|
|
static inline Bool operator!=(Vec3 Left, Vec3 Right)
|
|
{
|
|
ASSERT_COVERED(EqV3OpNot);
|
|
return !EqV3(Left, Right);
|
|
}
|
|
|
|
COVERAGE(EqV4OpNot, 1)
|
|
static inline Bool operator!=(Vec4 Left, Vec4 Right)
|
|
{
|
|
ASSERT_COVERED(EqV4OpNot);
|
|
return !EqV4(Left, Right);
|
|
}
|
|
|
|
COVERAGE(UnaryMinusV2, 1)
|
|
static inline Vec2 operator-(Vec2 In)
|
|
{
|
|
ASSERT_COVERED(UnaryMinusV2);
|
|
|
|
Vec2 Result;
|
|
Result.X = -In.X;
|
|
Result.Y = -In.Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(UnaryMinusV3, 1)
|
|
static inline Vec3 operator-(Vec3 In)
|
|
{
|
|
ASSERT_COVERED(UnaryMinusV3);
|
|
|
|
Vec3 Result;
|
|
Result.X = -In.X;
|
|
Result.Y = -In.Y;
|
|
Result.Z = -In.Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
COVERAGE(UnaryMinusV4, 1)
|
|
static inline Vec4 operator-(Vec4 In)
|
|
{
|
|
ASSERT_COVERED(UnaryMinusV4);
|
|
|
|
Vec4 Result;
|
|
#if HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_xor_ps(In.SSE, _mm_set1_ps(-0.0f));
|
|
#else
|
|
Result.X = -In.X;
|
|
Result.Y = -In.Y;
|
|
Result.Z = -In.Z;
|
|
Result.W = -In.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
#endif /* __cplusplus*/
|
|
|
|
#ifdef HANDMADE_MATH__USE_C11_GENERICS
|
|
#define Add(A, B) _Generic((A), \
|
|
Vec2: AddV2, \
|
|
Vec3: AddV3, \
|
|
Vec4: AddV4, \
|
|
Mat2: AddM2, \
|
|
Mat3: AddM3, \
|
|
Mat4: AddM4, \
|
|
Quat: AddQ \
|
|
)(A, B)
|
|
|
|
#define Sub(A, B) _Generic((A), \
|
|
Vec2: SubV2, \
|
|
Vec3: SubV3, \
|
|
Vec4: SubV4, \
|
|
Mat2: SubM2, \
|
|
Mat3: SubM3, \
|
|
Mat4: SubM4, \
|
|
Quat: SubQ \
|
|
)(A, B)
|
|
|
|
#define Mul(A, B) _Generic((B), \
|
|
float: _Generic((A), \
|
|
Vec2: MulV2F, \
|
|
Vec3: MulV3F, \
|
|
Vec4: MulV4F, \
|
|
Mat2: MulM2F, \
|
|
Mat3: MulM3F, \
|
|
Mat4: MulM4F, \
|
|
Quat: MulQF \
|
|
), \
|
|
Mat2: MulM2, \
|
|
Mat3: MulM3, \
|
|
Mat4: MulM4, \
|
|
Quat: MulQ, \
|
|
default: _Generic((A), \
|
|
Vec2: MulV2, \
|
|
Vec3: MulV3, \
|
|
Vec4: MulV4, \
|
|
Mat2: MulM2V2, \
|
|
Mat3: MulM3V3, \
|
|
Mat4: MulM4V4 \
|
|
) \
|
|
)(A, B)
|
|
|
|
#define Div(A, B) _Generic((B), \
|
|
float: _Generic((A), \
|
|
Mat2: DivM2F, \
|
|
Mat3: DivM3F, \
|
|
Mat4: DivM4F, \
|
|
Vec2: DivV2F, \
|
|
Vec3: DivV3F, \
|
|
Vec4: DivV4F, \
|
|
Quat: DivQF \
|
|
), \
|
|
Mat2: DivM2, \
|
|
Mat3: DivM3, \
|
|
Mat4: DivM4, \
|
|
Quat: DivQ, \
|
|
default: _Generic((A), \
|
|
Vec2: DivV2, \
|
|
Vec3: DivV3, \
|
|
Vec4: DivV4 \
|
|
) \
|
|
)(A, B)
|
|
|
|
#define Len(A) _Generic((A), \
|
|
Vec2: LenV2, \
|
|
Vec3: LenV3, \
|
|
Vec4: LenV4 \
|
|
)(A)
|
|
|
|
#define LenSqr(A) _Generic((A), \
|
|
Vec2: LenSqrV2, \
|
|
Vec3: LenSqrV3, \
|
|
Vec4: LenSqrV4 \
|
|
)(A)
|
|
|
|
#define Norm(A) _Generic((A), \
|
|
Vec2: NormV2, \
|
|
Vec3: NormV3, \
|
|
Vec4: NormV4 \
|
|
)(A)
|
|
|
|
#define Dot(A, B) _Generic((A), \
|
|
Vec2: DotV2, \
|
|
Vec3: DotV3, \
|
|
Vec4: DotV4 \
|
|
)(A, B)
|
|
|
|
#define Lerp(A, T, B) _Generic((A), \
|
|
float: Lerp, \
|
|
Vec2: LerpV2, \
|
|
Vec3: LerpV3, \
|
|
Vec4: LerpV4 \
|
|
)(A, T, B)
|
|
|
|
#define Eq(A, B) _Generic((A), \
|
|
Vec2: EqV2, \
|
|
Vec3: EqV3, \
|
|
Vec4: EqV4 \
|
|
)(A, B)
|
|
|
|
#define Transpose(M) _Generic((M), \
|
|
Mat2: TransposeM2, \
|
|
Mat3: TransposeM3, \
|
|
Mat4: TransposeM4 \
|
|
)(M)
|
|
|
|
#define Determinant(M) _Generic((M), \
|
|
Mat2: DeterminantM2, \
|
|
Mat3: DeterminantM3, \
|
|
Mat4: DeterminantM4 \
|
|
)(M)
|
|
|
|
#define InvGeneral(M) _Generic((M), \
|
|
Mat2: InvGeneralM2, \
|
|
Mat3: InvGeneralM3, \
|
|
Mat4: InvGeneralM4 \
|
|
)(M)
|
|
|
|
#endif
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
#endif /* HANDMADE_MATH_H */
|
|
|
|
|
|
|