Scuffed momentum

main
Cameron Murphy Reikes 2 years ago
parent a42b9a19bd
commit 7c6766e874

@ -94,6 +94,7 @@ Rect :: struct {
halfsize: Vector2;
pos , vel , force : Vector2; // pos is in world space
angle, angle_vel, torque: float;
static: bool;
mass: float = 1.0;
};
moment_of_inertia :: (using r: Rect) -> float {
@ -106,6 +107,7 @@ apply_force_at_point :: (r: *Rect, force: Vector2, point_world_space: Vector2) {
}
// everything needed to resolve the collision
Manifold :: struct {
a, b: *Rect;
count: int;
depths: [2] float;
contact_points: [2] Vector2; // in absolute coordinates
@ -119,9 +121,24 @@ perp :: (v: Vector2) -> Vector2
{
return xy(-v.y, v.x);
}
handle_collision :: (m: Manifold, a: Rect, b: Rect) {
handle_collision :: (m: Manifold, dt: float) {
a := m.a;
b := m.b;
if m.count == 0 return;
k_scalar :: (a: Rectangle, b: Rectangle, r1: Vector2, r2: Vector2, n: Vector2) {
for 0..m.count-1
{
total_momentum: float = length(a.vel) * a.mass + length(b.vel) * b.mass;
impulse_strength: float = 0.0;
//impulse_strength += m.depths[it] * 3.0;
impulse_strength += total_momentum / 2.0;
if a.static || b.static impulse_strength *= 2.0;
impulse := m.normal * impulse_strength;
apply_force_at_point(b, impulse / dt, m.contact_points[it]);
apply_force_at_point(a, -impulse / dt, m.contact_points[it]);
}
/*k_scalar :: (a: Rectangle, b: Rectangle, r1: Vector2, r2: Vector2, n: Vector2) {
k_scalar_rect :: (a: Rectangle, r: Vector2, n: Vector2)
{
rcn := cross(r, n);
@ -134,7 +151,7 @@ handle_collision :: (m: Manifold, a: Rect, b: Rect) {
}
r1 := m.contact_points[0] - a.pos;
r2 := m.contact_points[0] - b.pos;
nMass := 1.0 / k_scalar(a, b, r1, r2,
nMass := 1.0 / k_scalar(a, b, r1, r2, */
}
MAX_POLYGON_VERTS :: 8;
@ -232,7 +249,7 @@ check_faces :: (a: Polygon, b: Polygon) -> (separation: float, face_index: int)
return sep, index;
}
rect_to_rect :: (a: Rect, b: Rect) -> Manifold {
rect_to_rect :: (a: *Rect, b: *Rect) -> Manifold {
to_return : Manifold;
poly_a := poly_from(a);
@ -361,6 +378,8 @@ rect_to_rect :: (a: Rect, b: Rect) -> Manifold {
for 0..m.count-1 {
push_pip(m.contact_points[it]);
}
m.a = a;
m.b = b;
return m;
}
dump_polygon :: (poly: Polygon) {
@ -379,7 +398,7 @@ do_test :: () {
#if true {
print("A %\n", A_rect);
print("B %\n", B_rect);
print("Collision %\n", rect_to_rect(A_rect, B_rect));
print("Collision %\n", rect_to_rect(*A_rect, *B_rect));
}
@ -488,7 +507,8 @@ main :: () {
rects: [..]Rect;
array_add(*rects, .{pos = #run xy(0.0, 0.0), halfsize = #run xy(0.3)});
array_add(*rects, .{pos = #run xy(2.5, 0.0), halfsize = #run xy(0.3)});
array_add(*rects, .{pos = #run xy(-2.5, 0.0), halfsize = #run xy(0.3)});
array_add(*rects, .{pos = #run xy(0.0, -3.0), halfsize = #run xy(3.0, 0.2), static = true});
quit := false;
last_time := get_time();
@ -536,26 +556,43 @@ main :: () {
{
apply_force_at_point(*rects[0], xy(3, 0), rects[0].pos + xy(-0.1, 0.03));
}
for * rects
{
defer { it.force = .{}; it.torque = 0.0; };
it.vel += (it.force/MASS) * TIMESTEP;
it.pos += it.vel * TIMESTEP;
from_rect := it;
collisions: [..] Manifold;
defer array_free(collisions);
for * from_rect: rects {
for * to_rect: rects {
if to_rect != from_rect
{
manifold_out := rect_to_rect(from_rect, to_rect);
if manifold_out.count > 0 {
handle_collision(manifold_out, from_rect, to_rect);
//from_rect.vel *= -1.0;
unique := true;
for collisions {
if (it.a == manifold_out.a && it.b == manifold_out.b) || (it.a == manifold_out.b && it.b == manifold_out.a) {
unique = false;
break;
}
}
if unique array_add(*collisions, manifold_out);
}
}
}
it.angle_vel += (it.torque / moment_of_inertia(it)) * TIMESTEP;
it.angle += it.angle_vel * TIMESTEP;
}
for collisions {
handle_collision(it, TIMESTEP);
}
for * rects {
defer it.force = .{};
defer it.torque = 0.0;
// gravity
it.force.y += -9.81;
if !it.static
{
it.vel += (it.force/it.mass) * TIMESTEP;
it.pos += it.vel * TIMESTEP;
it.angle_vel += (it.torque / moment_of_inertia(it)) * TIMESTEP;
it.angle += it.angle_vel * TIMESTEP;
}
}
}
}

Loading…
Cancel
Save