@ -5,6 +5,50 @@
@ctype vec3 Vec3
@ctype vec3 Vec3
@ctype vec2 Vec2
@ctype vec2 Vec2
@block inverse_functions
// Webgl 1 doesn't have inverse() but we need it, pulled from https://github.com/glslify/glsl-inverse/blob/master/index.glsl
mat4 my_inverse(mat4 m) {
float
a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3],
a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3],
a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3],
a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3],
b00 = a00 * a11 - a01 * a10,
b01 = a00 * a12 - a02 * a10,
b02 = a00 * a13 - a03 * a10,
b03 = a01 * a12 - a02 * a11,
b04 = a01 * a13 - a03 * a11,
b05 = a02 * a13 - a03 * a12,
b06 = a20 * a31 - a21 * a30,
b07 = a20 * a32 - a22 * a30,
b08 = a20 * a33 - a23 * a30,
b09 = a21 * a32 - a22 * a31,
b10 = a21 * a33 - a23 * a31,
b11 = a22 * a33 - a23 * a32,
det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
return mat4(
a11 * b11 - a12 * b10 + a13 * b09,
a02 * b10 - a01 * b11 - a03 * b09,
a31 * b05 - a32 * b04 + a33 * b03,
a22 * b04 - a21 * b05 - a23 * b03,
a12 * b08 - a10 * b11 - a13 * b07,
a00 * b11 - a02 * b08 + a03 * b07,
a32 * b02 - a30 * b05 - a33 * b01,
a20 * b05 - a22 * b02 + a23 * b01,
a10 * b10 - a11 * b08 + a13 * b06,
a01 * b08 - a00 * b10 - a03 * b06,
a30 * b04 - a31 * b02 + a33 * b00,
a21 * b02 - a20 * b04 - a23 * b00,
a11 * b07 - a10 * b09 - a12 * b06,
a00 * b09 - a01 * b07 + a02 * b06,
a31 * b01 - a30 * b03 - a32 * b00,
a20 * b03 - a21 * b01 + a22 * b00) / det;
}
@end
// for this block, define a variable called `model_space_pos` to be used as an input
// for this block, define a variable called `model_space_pos` to be used as an input
@block vs_compute_light_output
@block vs_compute_light_output
@ -12,7 +56,7 @@
vec4 frag_pos = view * world_space_frag_pos;
vec4 frag_pos = view * world_space_frag_pos;
//@Speed I think we can just take the third row here and be fine.
//@Speed I think we can just take the third row here and be fine.
light_dir = normalize(inverse(directional_light_space_matrix) * vec4(0.0, 0.0, -1.0, 0.0)).xyz;
light_dir = normalize(my_ inverse(directional_light_space_matrix) * vec4(0.0, 0.0, -1.0, 0.0)).xyz;
light_space_fragment_position = directional_light_space_matrix * vec4(world_space_frag_pos.xyz, 1.0);
light_space_fragment_position = directional_light_space_matrix * vec4(world_space_frag_pos.xyz, 1.0);
@ -47,6 +91,8 @@ float decode_normalized_float32(vec4 v)
return sign * (v.z*255.0 + v.y);
return sign * (v.z*255.0 + v.y);
}
}
@include_block inverse_functions
void main() {
void main() {
vec4 total_position = vec4(0.0f);
vec4 total_position = vec4(0.0f);
@ -104,6 +150,8 @@ uniform vs_params {
vec3 wobble_world_source;
vec3 wobble_world_source;
};
};
@include_block inverse_functions
void main() {
void main() {
//vec3 transformed_pos = vec3(pos_in.x, pos_in.y + sin(pos_in.x * 5.0 + pos_in.y * 9.0 + time*1.9)*0.045, pos_in.z);
//vec3 transformed_pos = vec3(pos_in.x, pos_in.y + sin(pos_in.x * 5.0 + pos_in.y * 9.0 + time*1.9)*0.045, pos_in.z);